首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In many eukaryotes, endoplasmic reticulum (ER ) stress activates the unfolded protein response (UPR ) via the transmembrane endoribonuclease IRE 1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE 1 (CrIRE 1 ) and characterized two independent knock‐down alleles of this gene. CrIRE 1 is similar to IRE 1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc‐finger domain at the C terminus. CrIRE 1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N‐terminal region of CrIRE 1 fused to the cytosolic C‐terminal region of yeast Ire1p rescued the yeast ?ire1 mutant. Both allelic ire1 knock‐down mutants ire1‐1 and ire1‐2 were much more sensitive than their parental strain CC ‐4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC ‐4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS ) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE 1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE 1 is highly conserved during the evolutionary history.  相似文献   

2.
3.
Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain.  相似文献   

4.
Photosynthetic organisms have evolved numerous photoprotective mechanisms and alternative electron sinks/pathways to fine‐tune the photosynthetic apparatus under dynamic environmental conditions, such as varying carbon supply or fluctuations in light intensity. In cyanobacteria flavodiiron proteins (FDPs) protect the photosynthetic apparatus from photodamage under fluctuating light (FL). In Arabidopsis thaliana, which does not possess FDPs, the PGR5‐related pathway enables FL photoprotection. The direct comparison of the pgr5, pgrl1 and flv knockout mutants of Chlamydomonas reinhardtii grown under ambient air demonstrates that all three proteins contribute to the survival of cells under FL, but to varying extents. The FDPs are crucial in providing a rapid electron sink, with flv mutant lines unable to survive even mild FL conditions. In contrast, the PGRL1 and PGR5‐related pathways operate over relatively slower and longer time‐scales. Whilst deletion of PGR5 inhibits growth under mild FL, the pgrl1 mutant line is only impacted under severe FL conditions. This suggests distinct roles, yet a close relationship, between the function of PGR5, PGRL1 and FDP proteins in photoprotection.  相似文献   

5.
as1, for antenna size mutant 1, was obtained by insertion mutagenesis of the unicellular green alga Chlamydomonas reinhardtii. This strain has a low chlorophyll content, 8% with respect to the wild type, and displays a general reduction in thylakoid polypeptides. The mutant was found to carry an insertion into a homologous gene, prokaryotic arsenite transporter (ARSA), whose yeast and mammal counterparts were found to be involved in the targeting of tail‐anchored (TA) proteins to cytosol‐exposed membranes, essential for several cellular functions. Here we present the characterization in a photosynthetic organism of an insertion mutant in an ARSA‐homolog gene. The ARSA1 protein was found to be localized in the cytosol, and yet its absence in as1 leads to a small chloroplast and a strongly decreased chlorophyll content per cell. ARSA1 appears to be required for optimal biogenesis of photosynthetic complexes because of its involvement in the accumulation of TOC34, an essential component of the outer chloroplast membrane translocon (TOC) complex, which, in turn, catalyzes the import of nucleus‐encoded precursor polypeptides into the chloroplast. Remarkably, the effect of the mutation appears to be restricted to biogenesis of chlorophyll‐binding polypeptides and is not compensated by the other ARSA homolog encoded by the C. reinhardtii genome, implying a non‐redundant function.  相似文献   

6.
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5–5% CO2), a low CO2 (0.03–0.4% CO2) and a very low CO2 (< 0.02% CO2) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3 uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci, HCO3 or CO2, that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2 is minimal.  相似文献   

7.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

8.
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV‐C radiation. Lifetime reproduction assays conducted after ten and sixteen UV‐C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long‐term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.  相似文献   

9.
Abstract. Under stress conditions (darkness, nitrogen starvation, high ammonium concentrations, glutamine synthetase and glutamate synthase inhibition) glutamate dehydrogenase animating activity levels of Chlamydomonas cells varied inversely to those of glutamine synthetase. Nitrogen and carbon sources also influenced glutamate dehydrogenase levels in Chlamydomonas , the highest values being found in cells cultured mixotrophically with ammonium, under which conditions glutamate dehydrogenase and glutamine synthetase levels were likewise inversely related. These facts, together with the analysis of internal fluctuations of ammonium, 2-oxoglutarate, and the amino acid pool as well as the variations of certain enzymes involved in carbon metabolism indicate that glutamate dehydrogenase animating activity is adaptative, being involved in the maintenance of intracellular levels of L-glutamate when they cannot be maintained by the GS-GOGAT cycle, and probably more connected with carbon than nitrogen metabolism.  相似文献   

10.
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life‐history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation‐accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.  相似文献   

11.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   

12.
Screens of organisms with disruptive mutations in a single gene often fail to detect phenotypic consequences for the majority of mutants. One explanation for this phenomenon is that the presence of paralogous loci provides genetic redundancy. However, it is also possible that the assayed traits are affected by few loci, that effects could be subtle or that phenotypic effects are restricted to certain environments. We assayed a set of T‐DNA insertion mutant lines of Arabidopsis thaliana to determine the frequency with which mutation affected fitness‐related phenotypes. We found that between 8% and 42% of the assayed lines had altered fitness from the wild type. Furthermore, many of these lines exhibited fitness greater than the wild type. In a second experiment, we grew a subset of the lines in multiple environments and found whether a T‐DNA insert increased or decreased fitness traits depended on the assay environment. Overall, our evidence contradicts the hypothesis that genetic redundancy is a common phenomenon in A. thaliana for fitness traits. Evidence for redundancy from prior screens of knockout mutants may often be an artefact of the design of the phenotypic assays which have focused on less complex phenotypes than fitness and have used single environments. Finally, our study adds to evidence that beneficial mutations may represent a significant component of the mutational spectrum of A. thaliana.  相似文献   

13.
14.
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage‐infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl‐1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.  相似文献   

15.
There is a growing interest in the use of microalgae as low‐cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein‐coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome‐binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co‐introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.  相似文献   

16.
Upon nutrient deprivation, microalgae partition photosynthate into starch and lipids at the expense of protein synthesis and growth. We investigated the role of starch biosynthesis with respect to photosynthetic growth and carbon partitioning in the Chlamydomonas reinhardtii starchless mutant, sta6, which lacks ADP‐glucose pyrophosphorylase. This mutant is unable to convert glucose‐1–phosphate to ADP‐glucose, the precursor of starch biosynthesis. During nutrient‐replete culturing, sta6 does not re‐direct metabolism to make more proteins or lipids, and accumulates 20% less biomass. The underlying molecular basis for the decreased biomass phenotype was identified using LC–MS metabolomics studies and flux methods. Above a threshold light intensity, photosynthetic electron transport rates (water → CO2) decrease in sta6 due to attenuated rates of NADPH re‐oxidation, without affecting photosystems I or II (no change in isolated photosynthetic electron transport). We observed large accumulations of carbon metabolites that are precursors for the biosynthesis of lipids, amino acids and sugars/starch, indicating system‐wide consequences of slower NADPH re‐oxidation. Attenuated carbon fixation resulted in imbalances in both redox and adenylate energy. The pool sizes of both pyridine and adenylate nucleotides in sta6 increased substantially to compensate for the slower rate of turnover. Mitochondrial respiration partially relieved the reductant stress; however, prolonged high‐light exposure caused accelerated photoinhibition. Thus, starch biosynthesis in Chlamydomonas plays a critical role as a principal carbon sink influencing cellular energy balance however, disrupting starch biosynthesis does not redirect resources to other bioproducts (lipids or proteins) during nutrient‐replete culturing, resulting in cells that are susceptible to photochemical damage caused by redox stress.  相似文献   

17.
18.
Ice‐associated algae produce ice‐binding proteins (IBPs) to prevent freezing damage. The IBPs of the three chlorophytes that have been examined so far share little similarity across species, making it likely that they were acquired by horizontal gene transfer (HGT). To clarify the importance and source of IBPs in chlorophytes, we sequenced the IBP genes of another Antarctic chlorophyte, Chlamydomonas sp. ICE‐MDV (Chlamy‐ICE). Genomic DNA and total RNA were sequenced and screened for known ice‐associated genes. Chlamy‐ICE has as many as 50 IBP isoforms, indicating that they have an important role in survival. The IBPs are of the DUF3494 type and have similar exon structures. The DUF3494 sequences are much more closely related to prokaryotic sequences than they are to sequences in other chlorophytes, and the chlorophyte IBP and ribosomal 18S phylogenies are dissimilar. The multiple IBP isoforms found in Chlamy‐ICE and other algae may allow the algae to adapt to a greater variety of ice conditions than prokaryotes, which typically have a single IBP gene. The predicted structure of the DUF3494 domain has an ice‐binding face with an orderly array of hydrophilic side chains. The results indicate that Chlamy‐ICE acquired its IBP genes by HGT in a single event. The acquisitions of IBP genes by this and other species of Antarctic algae by HGT appear to be key evolutionary events that allowed algae to extend their ranges into polar environments.  相似文献   

19.
20.
Bioengineering of photoautotrophic microalgae into CO2 scrubbers and producers of value‐added metabolites is an appealing approach in low‐carbon economy. A strategy for microalgal bioengineering is to enhance the photosynthetic carbon assimilation through genetically modifying the photosynthetic pathways. The halotolerant microalgae Dunaliella posses an unique osmoregulatory mechanism, which accumulates intracellular glycerol in response to extracellular hyperosmotic stresses. In our study, the Calvin cycle enzyme sedoheptulose 1,7‐bisphosphatase from Chlamydomonas reinhardtii (CrSBPase) was transformed into Dunaliella bardawil, and the transformant CrSBP showed improved photosynthetic performance along with increased total organic carbon content and the osmoticum glycerol production. The results demonstrate that the potential of photosynthetic microalgae as CO2 removers could be enhanced through modifying the photosynthetic carbon reduction cycle, with glycerol as the carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号