首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两种室内生物测定方法评价杀虫剂对绿盲蝽的相对毒力   总被引:2,自引:0,他引:2  
张正群  郭天娥  王伟  刘峰  慕卫 《昆虫学报》2009,52(9):967-973
随着Bt棉在我国的广泛种植, 绿盲蝽Lygocoris lucorum Meyer-Dür的危害日益加重。化学防治作为棉田盲蝽综合治理的重要策略, 仍是其主要的防治手段。本研究主要用闪烁管药膜法和点滴法两种测定方法评价了传统杀虫剂、新型杀虫剂等30种杀虫剂对绿盲蝽成虫的急性触杀毒力, 其中多种杀虫剂是首次使用两种生测方法同时进行毒力测定。结果表明:有机氯类、有机磷类、氨基甲酸酯类和拟除虫菊酯类等传统杀虫剂对绿盲蝽成虫具有较高的触杀活性。8种对绿盲蝽成虫具有较高毒力的药剂, 其中5种为传统杀虫剂, 分别为马拉硫磷、毒死蜱、联苯菊酯、灭多威和硫丹。新型吡咯类杀虫剂对绿盲蝽表现出较高毒力, 以氟虫腈的毒力最高, 两种生测方法测定的LC50分别为0.13 μg·mL-1 和 0.15 μg·mL-1。而昆虫生长调节剂、抗生素类及植物源杀虫剂对绿盲蝽成虫没有明显的触杀活性。  相似文献   

2.
Both chemical and biological methods are essential for control of insects, for example, lepidopterans, on rice. Thus, it is important to know the effect of chemicals on the biological control agents. In this study, we assessed the toxicity of commonly used insecticides on a biological control agent, Trichogramma japonicum Ahmead (an egg parasitoid of rice lepidopterans) by using a dry film residue method. Results showed that thirty insecticides from seven chemical classes exhibited various degree of toxicity to this parasitoid. Among the seven classes of chemicals tested, organophosphates (chlorpyrifos, fenitrothion, phoxim, profenofos, and triazophos) and carbamates (carbaryl, carbsulfan, isoprocarb, metolcarb, and promecarb) exhibited the highest intrinsic toxicity to T. japponicum, with an LC50 of 0.035 (0.029-0.044) to 0.49 (0.34-0.87) mg active ingredient (a.i.) L(-1), followed by antibiotics (abamectin, emamectin benzoate, and ivermectin), phenylpyrazoles (butane-fipronil, ethiprole, and fipronil), pyrethroids (cyhalthrin, cypermethrin, fenpropathrin, and lambda-cyhaothrin), and neonicotinoids (acetamiprid, imidacloprid, imidaclothiz, nitenpyram, thiacloprid, and thiamethoxam). Moreover, the insect growth regulator insecticides (chlorfluazuron, fufenozide, hexaflumuron and tebufenozide) exhibited the lowest toxicity to the wasps with an LC50 of 3,383 (2406-5499) to 30206 (23107-41008) mg ai. L(-1). Risk quotient analysis showed that phenylpyrazoles, pyrethroids, insect growth regulators, neonicotinoids (with the exception of thiamethoxam), and antibiotics (with the exception of abamectin) are classified as safe agents to the parasitoid, while organophosphates and carbamates are classified as slightly, moderately, or highly toxic agents to the parasitoid. The data presented in this paper provided useful information on the selection of compatible insecticides with T. japonicum.  相似文献   

3.
Abstract:  To investigate fluctuation in susceptibility to insecticides, natural populations of Plutella xylostella were collected from the same field in the region of Multan, Pakistan, in late summer, mid-winter and early spring. After bulking up for a generation in the laboratory, the populations were examined against pyrethroids and organophosphates as well as newer insecticides (spinosad, indoxacarb and emamectin). Each population showed a broad range of variation in susceptibility to all chemicals. Comparison between populations collected in different times of years in 2003 and 2004 showed variation in susceptibility to organophosphates and pyrethroids. In winter, susceptibility to organophosphates increased, whereas it decreased in relation to pyrethroids. However, susceptibility to the newer insecticides was unchanged within the season. The results suggest that the fluctuation observed in susceptibility could be either associated with fitness costs of organophosphate and pyrethroids or cessation of insecticides. These results might have important implications in resistance management. We propose a strategy for application of insecticides in relation to P. xylostella management in Pakistan.  相似文献   

4.
The susceptibility of representative pyrethroid (cypermethrin, deltamethrin, lambdacyhalothrin, bifenthrin), organophosphate (chlorpyriphos, triazophos, profenophos) and new chemistry insecticides (spinosad, indoxacarb and emamectin) was investigated for 18 field populations of Plutella xylostella (Linnaeus) from three different zones in Pakistan. The LC(50) (mg ml(-1); 48 h) values of pyrethroids for various populations ranged from 0.19-1.88 for cypermethrin, 0.31-2.64 for deltamethrin, 0.08-1.16 for lambdacyhalothrin and 0.07-0.88 for bifenthrin. The LC(50) (mg ml(-1); 48 h) of organophosphates ranged from 0.52-5.67 for chlorpyriphos, 0.37-4.14 for triazophos and 0.03-2.65 for profenophos. The most probable reason for low toxicity of organophosphates and pyrethroids is the evolution of multiple resistance mechanisms; however, further studies are required to establish these mechanisms. When these same products were tested against a susceptible laboratory population (Lab-Pak), the new chemistry compounds were significantly more toxic than pyrethroids and organophosphates. The results are discussed in relation to integrated pest management and insecticide resistance management strategies for P. xylostella.  相似文献   

5.
Resistance to several classes of insecticides was correlated with azinphosmethyl resistance in codling moth, Cydia pomonella (L.), in California. In tests of laboratory and field populations, cross-resistance was positively correlated with azinphosmethyl and two organophosphates (diazinon, phosmet), a carbamate (carbaryl), a chlorinated hydrocarbon (DDT), and two pyrethroids (esfenvalerate and fenpropathrin). Additionally, negatively correlated cross-resistance was identified between azinphosmethyl and two other organophosphates, chlorpyrifos and methyl parathion. Patterns of resistance observed in laboratory colonies were confirmed with field bioassays. In bioassays of field populations, azinphosmethyl resistance was observed to increase from 1991 to 1993, although levels of resistance remained < 13-fold. Because orchards with azinphosmethyl resistance have had difficulties with suppression of codling moth, and cross-resistance was found for all tested classes of insecticides, strategies for managing resistance will need to be developed so as to protect current and future control tactics. The two insecticides with negatively correlated cross-resistance are discussed as potential tools for resistance management.  相似文献   

6.
  1. Pest management of stink bugs (Hemiptera: Pentatomidae) in soybean [Glycine max (L.) Merr.], corn (Zea mays L.) and cotton (Gossypium spp.) agroecosystems has become a major concern in several countries of the Americas.
  2. In this review, we report an overview on geographical distribution, injury, damage and methods used to control (plant resistance mechanisms, biological control) the most important stink bugs in the Americas, with an emphasis on Brazil, the implications of the trend towards decreased susceptibility of stink bug populations to insecticides and the current difficulties of the management of these insect pests.
  3. Currently, the Neotropical brown stink bug Euschistus heros (Fabricius) is less susceptible to organophosphate insecticides than in the past. A slight reduction in E. heros susceptibility to pyrethroids and, to a lesser extent, to neonicotinoids has also been observed. In addition, the green‐belly stink bug [Dichelops melacanthus (Dallas)] is more tolerant to the three classes of insecticides (neonicotinoids, organophosphates and pyrethroids) than E. heros.
  4. Metabolic detoxification is involved in organophosphate, neonicotinoid and pyrethroid differences in susceptibility. Restricted availability of insecticides with different modes of action could favour the selection of resistant phenotypes in stink bug populations.
  相似文献   

7.
化学防治是控制蚊虫传播疾病的主要方法, 抗性监测表明我国蚊虫已对有机磷、 有机氯、 氨基甲酸酯和拟除虫菊酯类杀虫剂产生了不同程度的抗性。蚊虫抗药性的分子机制主要包括靶标抗性和三大解毒酶家族带来的代谢抗性。筛选对杀虫剂敏感的品系是抗性监测和抗性机理研究必不可少的材料。本研究通过从一个致倦库蚊Culex pipiens quinquefasciatus野生种群筛选无乙酰胆碱酯酶G119S突变且具有低活性羧酸酯酶、 P450单加氧酶和谷胱甘肽-S-转移酶的单雌系, 建立了一个对杀虫剂敏感的致倦库蚊品系。该品系的羧酸酯酶活性是敏感品系S-lab的2.5倍, P450单加氧酶和谷胱甘肽-S-转移酶的活性与S-lab相当。生物测定表明, 与S-lab相比, 该品系对有机磷杀虫剂有低于2倍的抗性, 对氨基甲酸酯和拟除虫菊酯类杀虫剂没有抗性, 可以作为相对敏感品系用于抗性监测。  相似文献   

8.
The susceptibility of Culex tritaeniorhynchus collected from Gwangju, Jeollabuk Province, Republic of Korea (ROK) to insecticides was evaluated under laboratory conditions using ten insecticides (7 pyrethroids and 3 organophosphates) that are currently applied by local public health centers in the ROK. Based on the values of median lethal concentration (LC50), Cx. tritaeniorhynchus larvae were most susceptible to chlorpyrifos (0.006 ppm), fenitrothion (0.022 ppm), fenthion (0.035 ppm) and bifenthrin (0.038 ppm), and were least susceptible to esbiol (1.722 ppm). In comparative resistance tests, the resistance ratios (RRs) of seven insecticides were compared among each other using two strains of Cx. tritaeniorhynchus that were collected from the same locality during 1992 and 2010. Culex tritaeniorhynchus demonstrated significantly increased RRs to pyrethroids over time, while demonstrating decreased RRs among the organophosphates. Among the pyrethroids, permethrin had the highest RR values of 182.1‐ and 833.3‐fold differences, followed by etofenprox with RRs of 138.4‐ and 224.1‐fold differences in values of LC50 and concentration that produced 90% mortality (LC90), respectively. Culex tritaeniorhynchus strains demonstrated the least amount of change in susceptibility to the organophosphates, chlorpyrifos, fenitrothion and fenthion with 0.020‐, 0.019‐ and 0.001‐fold differences in resistance ratios (RRLC50), respectively.  相似文献   

9.
In response to reports of failures of sprays to control Plutella xylostella infestations in vegetable-growing areas around Adelaide in 1991, the extent of resistance to six insecticides in several South Australian populations of P. xylostella was determined. Populations sampled from vegetable crops in the Adelaide region were five- to 200-fold resistant to organophosphates (chlorpyrifos, methamidophos and mevinphos), eight- to 400-fold resistant to pyrethroids (esfenvalerate and permethrin) and six-fold resistant to the carbamate methomyl compared with a susceptible strain. Mevinphos and esfenvalerate were the most effective of the tested insecticides. These, together with Bacillus thuringiensis products, have continued until 1998 to be used almost exclusively for the control of P. xylostella in South Australian vegetable crops in the absence of any resistance management strategy.  相似文献   

10.
苹果蠹蛾是世界各国高度关注的严重危害苹果生产的外来有害生物。该虫于20世纪50年代在我国首次报道,目前是我国一类进境检疫性有害生物,正严重威胁我国苹果主产区的水果生产安全。苹果蠹蛾以幼虫钻蛀到果实内部为害,防治难度高,对其主要采用化学农药、交配干扰和苹果蠹蛾颗粒体病毒进行防治。由于农药的长期大量使用,苹果蠹蛾已对有机磷、氨基甲酸酯、拟除虫菊酯、昆虫生长调节剂、阿维菌素和苹果蠹蛾颗粒体病毒等不同类型的杀虫剂产生了抗药性。本文总结了国内外有关苹果蠹蛾抗药性现状和抗药性机理方面的研究,并分析了其对几种农药产生抗性的主要原因,同时结合国外苹果蠹蛾防治和抗药性相关研究,以及其在我国发生与防治的现状,提出该虫抗药性治理策略,即及时对我国疫区苹果蠹蛾的抗药性现状进行监测,在此基础上,注意科学地使用化学农药,并结合农业防治和生物防治等措施对该虫进行综合治理。  相似文献   

11.
The fruit fly Dacus ciliatus Loew is a pest of the fruits of many cucurbit species. We studied the effect of organaophosphate and pyrethroid compounds on the adult flies by using surface contact and oral administration. In contrast to other fruit flies, we found that organophosphates were ineffective against D. ciliatus. This was supported by the insignificant decrease of head acetylcholinesterase activity. All tested pyrethroids showed satisfactory killing ability, rapid and massive knockdown effect, and prevention of oviposition. Piperonyl butoxide considerably increased the toxicity of pyrethroids, which can be explained by oxidase detoxification of these compounds in D. ciliatus. It can be concluded that pyrethroids have high potential for controlling D. ciliatus.  相似文献   

12.
The diamondback moth (DBM), Plutella xylostella (L.) is a destructive pest of brassicas globally. Control of the pest is dominated by insecticides. Studies have shown that in some African countries, there is a great reliance on broad spectrum insecticides such as pyrethroids, organophosphates and carbamates, that are applied weekly or twice per week. Use of unregistered insecticides has also been reported. The quality of insecticide application has also been reported to be poor or ineffective. It is therefore not surprising that DBM is fast developing resistance to the major insecticides used against it. Adopting an integrated pest management strategy may be a good arsenal to use against the pest.  相似文献   

13.
The success of chemical control depends on toxicity of insecticides against insect pests. Camponotus sericeus is an important urban pest with the ability to cause substantial damage to wooden structures, but there is a lack of information on toxicity of insecticides against C. sericeus. To determine the insecticide toxicity, workers of C. sericeus were exposed to 17 insecticides from different classes: carbamate (methomyl, bendiocarb), organophosphate (chlorpyrifos, profenofos, temephos), pyrethroid (bifenthrin, deltamethrin, permethrin), neonicotinoid (acetamiprid, imidacloprid, thiamethoxam), avermectin (abamectin, emamectin), pyrrole (chlorfenapyr), phenylpyrazole (fipronil), and spinosyn (spinosad and spinetoram), via residual bioassay method. The LC50 ranged from: 0.15 to 0.20 µg/vial for carbamates, 0.09 to 0.27 µg/vial for organophosphates, 0.09 to 0.44 µg/vial for pyrethroids, 0.02 to 0.67 µg/vial for neonicotinoids, 0.54 to 0.82 µg/vial for avermectins, 0.78 µg/vial for pyrrole, 0.62 µg/vial for phenylpyrazole, and 1.96 to 2.05 µg/vial for spinosyns. Overall, acetamiprid was the most toxic one among the tested insecticides followed by permethrin, temephos, profenofos, bendiocarb and methomyl, while spinosad and spinetoram were the least toxic insecticides. Considering the potential toxicity of different insecticides against C. sericeus, future studies could investigate the practical application of these insecticides in order to design an effective management plan.  相似文献   

14.
The two most damaging biotypes of Bemisia tabaci, B and Q, are sympatric in the Mediterranean basin and show high resistance to pyrethroids synergized by organophosphates. Previous work showed that in the B biotype, this resistance is associated with the L925I mutation in the para-type voltage gated sodium channel. Here we identified two mutations in the para-type voltage gated sodium channel associated with resistance to pyrethroids synergized by organophosphates in the Q biotype: the L925I mutation that occurs in the B biotype, and substitution of threonine to valine, at position 929 (T929V). To determine if the L925I and T929V mutations have single or multiple origins, we sequenced the DNA regions flanking the mutations from 13 B and Q strains collected worldwide. The survey identified five resistant alleles and five susceptible alleles. In the resistant alleles, the nucleotide diversity was low within biotypes (0.001), but high between biotypes (0.033). Nucleotide diversity in susceptible alleles was high between the two biotypes (0.028). These observations are consistent with multiple independent origins of resistance. Although the B and Q biotypes coexist in several regions of the Mediterranean basin, divergence in their DNA sequences at the para-type voltage gated sodium channel locus suggests gene flow between these biotypes is low or nil.  相似文献   

15.
The behavioural responses previously reported from Coccinella septempunctata to the organophosphate, dimethoate, have implications for the effective development of integrated pest management (IPM) strategies. Through a series of simple tests, coccinellids’ consumption rates were measured from live pesticide-resistant aphids, treated with five insecticides from three chemical classes: carbamates, organophosphates and pyrethroids. This study quantifies for the first time the doses of ingested insecticide to which C. septempunctata responds, and demonstrates that a number of insecticides can cause C. septempunctata to change its feeding behaviour. Females were confirmed to eat more than males, and responses to insecticides were observed more frequently in females. Aphid consumption was reduced most in the pyrethroid treatment groups, but choice tests found no preference for either treated or untreated prey in any group. The results are discussed in terms of the mechanism by which coccinellids detect insecticides, and the consequences for IPM.  相似文献   

16.
Systemic insecticides such as neonicotinoids and fipronil are widely applied in rice production. These insecticides have been suspected of reducing biodiversity in paddy ecosystems and reducing wild dragonfly populations in Japan. Conventional ecotoxicological risk assessment could not confirm this, as it has not considered interspecific variation in sensitivity to insecticides. We estimated the median effect concentration (EC50) of 15 systemic insecticides to first instar nymphs of a Japanese damselfly, Ischnura senegalensis (Rambur) (Odonata: Coenagrionidae), commonly found in rice paddy fields. Damselflies were found to be highly sensitive to pyrethroid pesticides, less so to phenylpyrazole, organophosphates, and carbamates, and least sensitive to neonicotinoids, nereistoxin, and diamide. Given the acute toxicity data, the sensitivity of the damselfly to neonicotinoids was considered to be lower than that of other aquatic insects, whereas the EC50 values of the damselfly were 2–3 orders lower than that of Daphnia magna Straus (Diplostraca: Daphniidae), which is a standard test species. These results indicate that the conventional ecological risk assessment based on acute toxicity data of D. magna would underestimate the impact of neonicotinoids on Odonata diversity in paddy ecosystems. We therefore recommend using the paddy-dwelling damselfly as a new test species for insecticide bioassay.  相似文献   

17.
The susceptibility of Blattella germanica (L.) in the Republic of Korea (ROK) to insecticides was evaluated under laboratory conditions using 12 insecticides currently used by the local public health centers and/or pest control operators in the ROK. The insecticides included seven pyrethroids and five organophosphates. Based on their LD50 values, the order of susceptibility of B. germanica adults to the insecticides was chlorpyrifos-methyl, profenofos and chlorpyrifos with values of 0.07, 0.29 and 0.88 µg/♀, respectively. The least susceptibility was obtained with tetramethrin at LD50 of 7.39 µg/♀. In the comparative resistance test, the resistance ratios (RR) of 12 insecticides were compared to each other using field-collected B. germanica adults in Seoul between 1993 and 2007. Blattella germanica demonstrated higher RRs to pyrethroids such as λ-cyhalothrin, and low RRs among the organophosphates. Among the pyrethroids, λ-cyhalothrin had the highest RRs of 111- and 129-fold differences at LD50 and LD90 values, respectively. Among the organophosphates, profenofos was observed to have the highest RRs of 4- and 15-fold differences at LD50 and LD90 values, respectively. However, there were no significant differences in susceptibility to tetramethrin, chlorpyrifos and fenitrothion. Blattella germanica was more susceptible to pyridafenthion showing a 0.7-fold difference in a resistance ratio (RRLD50= LD50 value of 2007/LD50 value of 1993). Resistance ratio of tetramethrin was low, but susceptibility was also not high.  相似文献   

18.
The susceptibility of members of the Anopheles sinensis Group in Korea to insecticides was evaluated under laboratory conditions using 15 insecticides currently used by local public health centers in Korea. The insecticides included eight pyrethroids, six organophosphates and a pyrazol analogue. Based on their LC50 values, the order of susceptibility of An. sinensis larvae to the insecticides was bifenthrin, chlorfenapyr, α-cypermethrin and λ-cyhalothrin, with values of 0.009, 0.04, 0.06 and 0.08 p.p.m., respectively. The least susceptibility was obtained with fenitrothion, with an LC50 of 7.7 p.p.m. In the comparative resistance test, the resistance ratios (RR) of 14 insecticides were compared to each other using two strains of members of the An. sinensis Group collected in the locality in 2001 and 2008. Anopheles spp. demonstrated higher RR to organophosphates such as fenthion, and low RR for the pyrethroids. Among the organophosphates, fenthion had the highest RR of 33.3 and 270.0 fold differences for LC50 and LC90 values, respectively. Among the pyrethroids, permethrin was observed to have the highest RR of 3.8 and 1.8 fold differences for LC50 and LC90 values, respectively. However, there were no significant differences in susceptibility to chlorfenapyr, chlorpyrifos, deltamethrin and fenitrothion. An. sinensis s. l. was more susceptible to the six insecticides bifenthrin, λ-cyhalothrin, α-cypermethrin, cypermethrin, cyfluthrin and pyridafenthion, showing 0.03, 0.06, 0.3, 0.3, 0.4 and 0.4 fold differences in resistance rates (RR LC50), respectively.  相似文献   

19.
Toxicity of bendiocarb, chlorpyrifos, cyfluthrin, cypermethrin, fenvalerate, hydramethylnon, malathion, propetamphos, propoxur, and pyrethrins against the adult German cockroaches, Blattella germanica (L.), was investigated. At LD50, cyfluthrin was the most toxic insecticide to adult males (0.53 microgram/g), adult females (1.2 micrograms/g), and gravid females (0.85 microgram/g). Malathion was the least toxic insecticide to adult males (464.83 micrograms/g), adult females (335.83 micrograms/g), and gravid females (275.90 micrograms/g). Males and gravid females were generally more sensitive than nongravid females to the insecticides that we tested. In tests with malathion, however, males were more tolerant. The order of toxicity of the insecticide classes varied among the stages of adult German cockroaches. The order of toxicity for males and nongravid females was pyrethroids greater than pyrethrins = organophosphates (except malathion) greater than carbamates = amidinohydrazone. The order of toxicity for gravid females was pyrethroids greater than pyrethrins = organophosphates (except malathion) greater than carbamates greater than amidinohydrazone. These differences in toxicity suggest that sex differences should be considered when determining insecticide toxicity for German cockroaches.  相似文献   

20.
The history of insecticide resistance in the horn fly, Haematobia irritans, and the relationship between the characteristics of horn fly biology and insecticide use on resistance development is discussed. Colonies of susceptible horn flies were selected for resistance with six insecticide treatment regimens: continuous single use of permethrin, diazinon and ivermectin: permethrin-diazinon (1:2) mixture; and permethrin-diazinon and permethrin-ivermectin rotation (4-month cycle). Under laboratory conditions, resistance developed during generations 21, 31 and 30 to permethrin, diazinon and ivermectin, respectively. The magnitude of resistance ranged from < 3-fold with ivermectin to 1470-fold with permethrin. Field studies demonstrated that use of a single class of insecticidal ear tag during the horn-fly season resulted in product failure within 3-4 years for pyrethroids and organophosphates, respectively. In laboratory studies, use of alternating insecticides or a mixture of insecticides delayed the onset of resistance for up to 12 generations and reduced the magnitude of pyrethroid resistance. In field studies, yearly alternated use of pyrethroids and organophosphates did not slow or reverse pyrethroid resistance (Barros et al., unpublished data), while a 2-year alternated use with organophosphates resulted in partial reversion of pyrethroid resistance. When pyrethroid and organophosphate ear tags were used in a mosaic strategy at two different locations, efficacy of products did not change during a 3-year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号