首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.  相似文献   

2.
3.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

4.
5.
Three‐dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold‐based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte‐like cells using embryoid body protocol in the two‐dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte‐like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or ?EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate‐based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene‐expression patterns, we can conclude that alginate‐based 3D coculture system provided a highly efficient protocol for oocyte‐like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte‐like cell differentiation.  相似文献   

6.
The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.  相似文献   

7.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.  相似文献   

8.
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.  相似文献   

9.
10.
11.
Deficiencies in maternal diet, such as inadequate intake of folate, can inhibit normal development and lead to developmental defects. MicroRNAs (miRNAs) may play a role in mediating the effects of folate deficiency in the growing mammalian embryo, although conclusive evidences to support that possibility are not yet available. The goal of the present study was to investigate whether and how folate deprivation alters the properties of mouse embryonic stem cells (mESCs) in culture. For this purpose, mESCs were cultured in folate-deficient or complete culture medium. The results show that folate-deficient mESCs have a significantly higher rate of apoptosis, accumulate in G0/G1 and fail to proliferate. Expression profiling revealed several miRs and many mRNAs are differently expressed in folate-deficient cells. RT-PCR data confirmed differential expressions of 12 miRNAs in folate-deficient cells. Furthermore, bioinformatics analyses and in vitro studies suggested that miR-302a plays a critical role in mediating the effects of folate on cell proliferation and cell cycle-specific apoptosis by targeting Lats2 gene. Together, these results suggest that the effects of folate deficiency on mammalian development may be mediated by miRNAs that regulate proliferation and/or cell cycle progression in ESCs.  相似文献   

12.
Pluripotent stem cells (PSCs) such as embryonic stem cells and induced PSCs can differentiate into all somatic cell types such as cardiomyocytes, nerve cells, and chondrocytes. However, PSCs can easily lose their pluripotency if the culture process is disturbed. Therefore, cell sorting methods for purifying PSCs with pluripotency are important for the establishment and expansion of PSCs. In this study, we focused on dielectrophoresis (DEP) to separate cells without fluorescent dyes or magnetic antibodies. The goal of this study was to establish a cell sorting method for the purification of PSCs based on their pluripotency using DEP and a flow control system. The dielectrophoretic properties of mouse embryonic stem cells (mESCs) with and without pluripotency were evaluated in detail, and mESCs exhibited varying frequency dependencies in the DEP response. Based on the variance in DEP properties, mixed cell suspensions of mESCs can be separated according to their pluripotency with an efficacy of approximately 90%.  相似文献   

13.
14.
The effects of epidermal growth factor (EGF) on the growth and morphology of mouse embryo epithelial cells (MMC-E) were studied in culture. Growing cultures of epithelial cells were incubated in the media containing EGF or certain other mitogenic peptides. It was found that nanogram (ng) quantities of EGF stimulated growth in these cells and caused reversible phenotypic changes in these cells. These changes were not observed in cultures treated with the other mitogens. The compact growing islands of MMC-E cells were surrounded by elongated border cells [12]. EGF induced the elongated border cells to flatten and spread. The change of the elongated border cells into polygonal, flattened cells was dependent on the dose of EGF. After treatment with higher concentrations of EGF all cells appeared more flattened and their cytoplasm was more granular than that of the controls. Scanning electron microscopic studies (SEM) showed that the elongated border cells in the control cultures were distinctly higher than the cells inside the islands, while after exposure to EGF they flattened and had fewer surface microvilli than control cells. When EGF was removed and the cells were further cultivated in media without EGF, the border cells became smaller and elongated, eventually resembling those in the control cultures. These results show that EGF may act as a regulatory factor in the control of the proliferation and differentiation of mouse epithelial cells.  相似文献   

15.
We examined whether chick embryos are a suitable experimental model for the evaluation of pluripotency of stem cells. Mouse embryonic stem cells (mESCs) expressing the reporter gene, LacZ or GFP were injected into the subgerminal cavity of blastoderms (freshly oviposited) or the marginal vein of chick embryos (2 days of incubation). Injected mESCs were efficiently incorporated into the body and extra‐embryonic tissues of chick embryos and formed small clusters. Increased donor cell numbers injected were positively associated with the efficiency of chimera production, but with lower viability. A single mESC injected into the blastoderm proliferated into 34.7 ± 3.8 cells in 3 days, implying that the chick embryo provides an optimal environment for the growth of xenogenic cells. In the embryo body, mESCs were interspersed as small clustered chimeras in various tissues. Teratomas were observed in the yolk sac and the brain with three germ layers. In the yolk sac, clusters of mESCs gradually increased in volume and exhibited varied morphology such as a water balloon‐like or dark‐red solid mass. However, mESCs in the brain developed into a large soft tissue mass of whitish color and showed a tendency to differentiate into ectodermal lineage cells, including primitive neural ectodermal and neuronal cells expressing the neurofilament protein. These results indicate that chick embryos are useful for the teratoma formation assays of mESCs and have a broad‐range potential as an experimental host model.  相似文献   

16.
17.
18.
We have previously described the derivation of insulin-producing cell lines from mouse embryonic stem cells (mESCs) by differentiation of an intermediate lineage-restricted E-RoSH cell line through nutrient depletion in the presence of nicotinamide followed by limiting dilution. Here we investigated whether insulin-producing cell lines could be similarly derived directly from mouse embryo cells or tissues. Using a similar approach, we generated the RoSH2.K and MEPI-1 to -14 insulin-producing cell lines from the 5.5-dpc embryo-derived E-RoSH-analogous RoSH2 cell line and a 6.0-dpc mouse embryo culture, respectively. Insulin content was ~8 μg/106 MEPI-1 cells and 0.5 μg/106 RoSH2.K cells. Like insulin-producing mESC-derived ERoSHK cell lines, both MEPI and RoSH2.K lines were amenable to repeated cycles of freeze and thaw, replicated for months with a doubling time of 3–4 days, and exhibited genomic, structural, biochemical, and pharmacological properties of pancreatic β-cells, including storage and release of insulin and C-peptide in an equimolar ratio. Transplantation of these cells also reversed hyperglycemia in streptozotocin-treated SCID mice and did not induce teratoma. Like ERoSHK cells, both RoSH2.K and MEPI-1 cells also induced hypoglycemia in the mice. Therefore, our protocol is robust and could reproducibly generate insulin-producing cell lines from different embryonic cell sources.  相似文献   

19.
In the testis TNF is produced by germinal cells. The putative role of tumor necrosis factor alpha (TNF) in development and differentiation was investigated in 45T-1 mouse cell cultures, a cell line with characteristic markers of Sertoli cells, established from transgenic mouse families expressing the polyoma large T antigen in their testes. Exposure to TNF elicited a gradual assembly of the cells of the monolayer into highly organized spheroids. The first morphological sign of the changes was detected one week after TNF treatment by anti-desmin immunostaining which showed the formation of foci in the culture consisting of several hundred cells connected by an increasing number of cell contacts. Between days 10-20 the cells formed large ovoid or vermiform aggregates covered by several layers of flat, elongated cells. These cells extended septae into the inner mass of the spheroids consisting of loosely arranged, large polygonal or palisadic cells. The spheroids were surrounded by radially arranged elongated cells covered by small blebs. TNF treatment upregulated laminin expression in 45T-1 cell cultures, which is known to induce formation of cord-like structures by Sertoli cells in vitro. Coculturing 45T-1 cells with immortalized germinal cells or TNF-producing HeLa cells also lead to the formation of spheroids. These observations suggest that TNF production of germinal cells might contribute to the organization/differentiation of Sertoli cells.  相似文献   

20.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan-gelatin hydrogel, HyStem-C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem-C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem-C? enabled the attachment of hiPSCs in a xeno-free, fully defined medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号