首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermatozoa represent the morphologically most diverse type of animal cells and show remarkable variation in size across and also within species. To understand the evolution of this diversity, it is important to reveal to what degree this variation is genetic or environmental in origin and whether this depends on species’ life histories. Here we applied quantitative genetic methods to a pedigreed multigenerational data set of the collared flycatcher Ficedula albicollis, a passerine bird with high levels of extra‐pair paternity, to partition genetic and environmental sources of phenotypic variation in sperm dimensions for the first time in a natural population. Narrow‐sense heritability (h2) of total sperm length amounted to 0.44 ± 0.14 SE, whereas the corresponding figure for evolvability (estimated as coefficient of additive genetic variation, CVa) was 0.02 ± 0.003 SE. We also found an increase in total sperm length within individual males between the arrival and nestling period. This seasonal variation may reflect constraints in the production of fully elongated spermatozoa shortly after arrival at the breeding grounds. There was no evidence of an effect of male age on sperm dimensions. In many previous studies on laboratory populations of several insect, mammal and avian species, heritabilities of sperm morphology were higher, whereas evolvabilities were similar. Explanations for the differences in heritability may include variation in the environment (laboratory vs. wild), intensity of sexual selection via sperm competition (high vs. low) and genetic architecture that involves unusual linkage disequilibrium coupled with overdominance in one of the studied species.  相似文献   

2.
In Tribolium flour beetles and other organisms, individuals migrate between heterogeneous environments where they often encounter markedly different nutritional conditions. Under these circumstances, theory suggests that genotype-by-environment interactions (GEI) may be important in facilitating adaptation to new environments and maintaining genetic variation for male traits subject to directional selection. Here, we used a nested half-sib breeding design with Tribolium castaneum to partition the separate and joint effects of male genotype and nutritional environment on phenotypic variation in a comprehensive suite of life-history traits, reproductive performance measures across three sequential sexual selection episodes, and fitness. When male genotypes were tested across three nutritional environments, considerable phenotypic plasticity was found for male mating and insemination success, longevity and traits related to larval development. Our results also revealed significant additive genetic variation for male mating rate, sperm offence ability (P(2)), longevity and total fitness and for several traits reflecting both larval and adult resource use. In addition, we found evidence supporting GEI for sperm defence ability (P(1)), adult longevity and larval development; thus, no single male genotype outperforms others in every nutritional environment. These results provide insight into the potential roles of phenotypic plasticity and GEI in facilitating Tribolium adaptation to new environments in ecological and evolutionary time.  相似文献   

3.
Spermatozoa are the most diverse of all animal cells. Variation in size alone is enormous and yet there are still no clear evolutionary explanations that can account for such diversity. The basic genetics of sperm form is also poorly understood, although sperm size is known to have a strong genetic component. Here, using hemiclonal analysis of Drosophila melanogaster, we demonstrate that there is not only a significant additive genetic component contributing to phenotypic variation in sperm length but also a significant environmental effect. Furthermore, the plasticity of sperm size has a significant genetic component to it (a genotype x environment interaction). A genotype x environment interaction could contribute to the maintenance of the substantial genetic variation in this trait and thereby explain the persistent inter-male differences in sperm size seen in numerous taxa. We suggest that the low conditional dependence and high heritability but low evolvability (the coefficient of additive genetic variation) of sperm length is more consistent with a history of stabilizing selection rather than either sexual selection or strong directional selection.  相似文献   

4.
Postcopulatory sexual selection favours males which are strong offensive and defensive sperm competitors. As a means of identifying component traits comprising each strategy, we used an experimental evolution approach. Separate populations of Drosophila melanogaster were selected for enhanced sperm offence and defence. Despite using a large outbred population and evidence of substantive genetic variation for each strategy, neither trait responded to selection in the two replicates of this experiment. Recent work with fixed chromosome lines of D. melanogaster suggests that complex genotypic interactions between females and competing males contribute to the maintenance of this variation. To determine whether such interactions could explain our lack of response to selection on sperm offence and defence, we quantified sperm precedence across multiple sperm competition bouts using an outbred D. melanogaster population exhibiting continuous genetic variation. Both offensive and defensive sperm competitive abilities were found to be significantly repeatable only across matings involving ejaculates of the same pair of males competing within the same female. These repeatabilities decreased when the rival male stayed the same but the female changed, and they disappeared when both the rival male and the female changed. Our results are discussed with a focus on the complex nature of sperm precedence and the maintenance of genetic variation in ejaculate characteristics.  相似文献   

5.
The outcome of post‐copulatory sexual selection is determined by a complex set of interactions between the primary reproductive traits of two or more males and their interactions with the reproductive traits of the female. Recently, a number of studies have shown the primary reproductive traits of both males and females express phenotypic plasticity in response to the thermal environment experienced during ontogeny. However, how plasticity in these traits affects the dynamics of sperm competition remains largely unknown. Here, we demonstrate plasticity in testes size, sperm size and sperm number in response to developmental temperature in the bruchid beetle Callosobruchus maculatus. Males reared at the highest temperature eclosed at the smallest body size and had the smallest absolute and relative testes size. Males reared at both the high‐ and low‐temperature extremes produced both fewer and smaller sperm than males reared at intermediate temperatures. In the absence of sperm competition, developmental temperature had no effect on male fertility. However, under conditions of sperm competition, males reared at either temperature extreme were less competitive in terms of sperm offence (P2), whereas those reared at the lowest temperature were less competitive in terms of sperm defence (P1). This suggests the developmental pathways that regulate the phenotypic expression of these ejaculatory traits are subject to both natural and sexual selection: natural selection in the pre‐ejaculatory environment and sexual selection in the post‐ejaculatory environment. In nature, thermal heterogeneity during development is commonplace. Therefore, we suggest the interplay between ecology and development represents an important, yet hitherto underestimated component of male fitness via post‐copulatory sexual selection.  相似文献   

6.
Sperm production is physiologically costly. Consequently, males are expected to be prudent in their sperm production, and tailor their expenditure according to prevailing social conditions. Differences in sperm production have been found across island populations of house mice that differ in the level of selection from sperm competition. Here, we determined the extent to which these differences represent phenotypic plasticity and/or population divergence in sperm production. We sourced individuals from two populations at the extreme levels of sperm competition, and raised them under common‐garden conditions while manipulating the social experience of developing males. Males from the high‐sperm competition population produced more sperm and better quality sperm than did males from the low‐sperm competition population. In addition, males reared under a perceived “risk” of sperm competition produced greater numbers of sperm than males reared with “no risk.” However, our analyses revealed that phenotypic plasticity in sperm production was greater for individuals from the high‐sperm competition population. Our results are thus consistent with both population divergence and phenotypic plasticity in sperm production, and suggest that population level of sperm competition might affect the degree of adaptive plasticity in sperm production in response to sperm competition risk.  相似文献   

7.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

8.
Multiple mating by females has been proposed to function as a form of mate-choice, which implies that males should show heritable variation in sperm-competitive abilities. In this study, repeatability and heritability of sperm competition success was estimated in the bulb mite, Rhizoglyphus robini. Fertilization success of males was estimated in competition with sperm of two other males. Males differed consistently in their sperm competition success, with repeatability estimated at 0.22. The heritability of sperm competition success was estimated using parent-offspring regression, with the mean fertilization success from two matings used as a measure of each male's competitive ability. There was a significant association between the sperm competition success of fathers and sons. Narrow sense heritability (h2) was 0.284. This result supports the hypotheses proposing the multiple mating is selectively maintained in females by enhancing the reproductive success of their progeny.  相似文献   

9.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

10.
Polyandry is widespread despite its costs. The sexually selected sperm hypotheses (‘sexy’ and ‘good’ sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg‐to‐adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg‐to‐adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes.  相似文献   

11.
Recent studies have advocated a role for mitochondrial DNA (mtDNA) in sperm competition. This is controversial because earlier theory and empirical work suggested that mitochondrial genetic variation for fitness is low. Yet, such studies dealt only with females and did not consider that variation that is neutral when expressed in females, might be non-neutral in males as, in most species, mtDNA is never selected in males. We measured male ability to compete for fertilizations, at young and late ages, across 25 cytoplasms expressed in three different nuclear genetic backgrounds, within a population of Drosophila melanogaster. We found no cytoplasmic (thus no mtDNA) genetic variation for either male offence or offensive sperm competitiveness. This contrasts with previous findings demonstrating cytoplasmic genetic variation for female fitness and female ageing across these same lines. Taken together, this suggests that mitochondrial genes do not contribute to variation in sperm competition at the within-population level.  相似文献   

12.
Postcopulatory sexual selection, either in the form of sperm competition or cryptic female choice, is an important selective force that is thought to have generated the enormous variation in sperm morphology observed interspecifically. However, the evolutionary significance of intraspecific variation in sperm morphology, and the role that postcopulatory sexual selection plays in influencing this variation, remains poorly investigated in invertebrates. Here, we tested the hypothesis that postcopulatory sexual selection reduces variation in sperm morphology, both between and within males, in 27 species of eusocial ants and bees. These eusocial species offer an unusual opportunity to assess how selection acts on variance in sperm morphology, as haploid males produce clonal, haploid sperm that does not experience haploid-diploid conflict. We provide solid evidence that males of polyandrous ant and bee species indeed produce less-variable sperm, indicating that sperm competition selected for sperm of superior quality. Our results offer a mechanistic explanation for the evolution of high-quality sperm and provide comprehensive evidence that sperm morphology of social insects is influenced by sexual selection.  相似文献   

13.
Sperm senescence can have important evolutionary implications due to its deleterious effects on sperm quality and offspring performance. Consequently, it has been argued that polyandry (female multiple mating) may facilitate the selection of younger, and therefore competitively superior, sperm when ejaculates from multiple males compete for fertilization. Surprisingly, however, unequivocal evidence that sperm ageing influences traits that underlie sperm competitiveness is lacking. Here, we used a paired experimental design that compares sperm quality between ‘old’ and ‘young’ ejaculates from individual male guppies (Poecilia reticulata). We show that older sperm exhibit significant reductions in sperm velocity compared with younger sperm from the same males. We found no evidence that the brightness of the male''s orange (carotenoid) spots, which are thought to signal resistance to oxidative stress (and thus age-related declines in sperm fitness), signals a male''s ability to withstand the deleterious effects of sperm ageing. Instead, polyandry may be a more effective strategy for females to minimize the likelihood of being fertilized by aged sperm.  相似文献   

14.
Sperm competition is widely recognized as a potent force in evolution, influencing male behavior, morphology, and physiology. Recent game theory analyses have examined how sperm competition can influence the evolution of ejaculate expenditure by males and the morphology of sperm contained within ejaculates. Theoretical analyses rest on the assumption that there is sufficient genetic variance in traits important in sperm competition to allow evolving populations to move to the evolutionarily stable equilibrium. Moreover, patterns of genotypic variation can provide valuable insight into the nature of selection currently acting on traits. However, our knowledge of genetic variance underlying traits important in sperm competition is limited. Here we examine patterns of phenotypic and genotypic variation in four sperm competition traits in the dung beetle Onthophagus taurus. Testis weight, ejaculate volume, and copula duration were found to have high coefficients of additive genetic variation (CV(A)S), which is characteristic of fitness traits and traits subject to sexual selection. Heritabilities were high, and there was some evidence for Y-linked inheritance in testis weight. In contrast, sperm length had a low CV(A), which is characteristic of traits subject to stabilizing selection. Nevertheless, there was little residual variance so that the heritability of sperm length exceeded 1.0. Such a pattern is consistent with Y-linked inheritance in sperm length. Interestingly, we found that testis weight and sperm length were genetically correlated with heritable male condition. This finding holds important implications for potential indirect benefits associated with the evolution of polyandry.  相似文献   

15.
Between species, variation in sperm size has been related to male–female coevolution and male–male competition. In contrast, variation within species is poorly understood. A particular case of intraspecific sperm-size variation occurs in sperm-heteromorphic species, where males produce distinct sperm morphotypes, usually only one of which is fertile. This allows to investigate sperm size variation under different selection regimes. Nonfertile morphotypes, whose role is aside from fertilization, may have other functions, and this may be reflected by changes in developmental processes and a different phenotype compared to fertile sperm. We show that the intraspecific coefficient of variation in sperm length is up to four times lower for fertile than nonfertile morphotypes across 150 sperm-heteromorphic species (70 butterfly, 71 moth, 9 diopsid fly species). This is in agreement with a previous study on 11 species in the Drosophila obscura group. Significantly lower variation in fertile than nonfertile sperm morphometry may result from fertilization-related selection for optimal sperm size, novel functions of nonfertile sperm, or from tighter control of fertile sperm development. More data are needed to clarify the consequences and adaptive significance of within-morph variation, and its consistent pattern across sperm-heteromorphic insects.Co-ordinating editor: Hurst  相似文献   

16.
I have examined the adaptive significance of polyandry using the Australian field cricket Teleogryllus oceanicus. Previous studies of polyandry have examined differences in offspring production by females mated multiply to a single male or females mated multiply to different males. Here I combine this approach with a study of parentage of offspring produced in the later group. Females mated to two different males had a higher proportion of their eggs hatching than did females mating twice with a single male. Offspring fitness parameters were not effected. There was little evidence to suggest that females elevate their hatching success via fertilizing their eggs with sperm from genetically compatible males. Although the average paternity points towards random sperm mixing, there was considerable individual variation in sperm competition success. Patterns of parentage were consistent across females mating twice or four times. Sperm competition success was not related to offspring viability or performance. Thus, the notion that competitively superior sperm produce competitively superior offspring is not supported either. The mechanism underlying increased hatching success with polyandry requires further study.  相似文献   

17.
Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata . Second, by using the quantitative genetic "animal model" on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved.  相似文献   

18.
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.  相似文献   

19.
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.  相似文献   

20.
As sperm production is costly, males are expected to strategically allocate resources to sperm production according to mating opportunities. While sperm number adjustments have been reported in several taxa, only a few studies investigated whether sperm quality shows adaptive plasticity as well. We tested this prediction in the guppy, Poecilia reticulata. A total of 46 males were initially stripped of all retrievable sperm before being randomly allocated to one of two treatments simulating different levels of mating opportunities (visual contact with females or female deprived). After 3 days, males were stripped and sperm velocity was assayed using Computer Assisted Sperm Analysis. Males in the presence of females produced significantly faster sperm than their counterparts. Implications for the evolution of this ejaculate plasticity in the light of results of sperm competition studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号