首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.  相似文献   

2.
The potential to adapt to novel environmental conditions is a key area of interest for evolutionary biology. However, the role of multiple selection pressures on adaptive responses has rarely been investigated in natural populations. In Sweden, the natterjack toad Bufo calamita inhabits two separate distribution areas, one in southernmost Sweden and one on the west coast. We characterized the larval habitat in terms of pond size and salinity in the two areas, and found that the western populations are more affected by both desiccation risk and pond salinity than the southern populations. In a common garden experiment manipulating salinity and temperature, we found that toads from the west coast populations were locally adapted to shorter pond duration as indicated by their higher development and growth rates. However, despite being subjected to higher salinity stress in nature, west coast toads had a poorer performance in saline treatments. We found that survival in the saline treatments in the west coast populations was positively affected by larger body mass and longer larval period. Furthermore, we found negative genetic correlations between body mass and growth rate and their plastic responses to salinity. These results implicate that the occurrence of multiple environmental stressors needs to be accounted for when assessing the adaptive potential of organisms and suggest that genetic correlations may play a role in constraining adaptation of natural populations.  相似文献   

3.
4.
Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management.  相似文献   

5.
Tolerance to parasites reduces the harm that infection causes the host (virulence). Here we investigate the evolution of parasites in response to host tolerance. We show that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism. If tolerance reduces virulence by a constant factor, the parasite is always selected to increase its growth rate. Alternatively, if tolerance reduces virulence in a nonlinear manner such that it is less effective at reducing the damage caused by higher growth rates, this may select for faster or slower replicating parasites. If the host is able to completely tolerate pathogen damage up to a certain replication rate, this may result in apparent commensalism, whereby infection causes no apparent virulence but the original evolution of tolerance has been costly. Tolerance tends to increase disease prevalence and may therefore lead to more, rather than less, disease-induced mortality. If the parasite is selected, even a highly efficient tolerance mechanism may result in more individuals in total dying from disease. However, the evolution of tolerance often, although not always, reduces the individual risk of dying from infection.  相似文献   

6.
Previously we have shown that the Japanese macaque gut microbiome differs not by obesity per se, but rather in association with high‐fat diet (HFD) feeding. This held true for both pregnant dams, as well as their 1‐year‐old offspring, even when weaned onto a control diet. Here we aimed to examine the stability of the gut microbiome over time and in response to maternal and postweaning HFD feeding from 6 months of age, and at 1 and 3 years of age. In both cross‐sectional and longitudinal specimens, we performed analysis of the V4 hypervariable region of the 16S rRNA gene on anus swabs collected from pregnant dams and their juveniles at age 6 months to 3 years (n = 55). Extracted microbial DNA was subjected to 16S‐amplicon‐based metagenomic sequencing on the Illumina MiSeq platform. We initially identified 272 unique bacterial genera, and multidimensional scaling revealed samples to cluster by age and diet exposures. Dirichlet multinomial mixture modeling of microbiota abundances enabled identification of two predominant enterotypes to which samples sorted, characterized primarily by Treponema abundance, or lack thereof. Approximating the time of initial weaning (6 months), the Japanese macaque offspring microbiome underwent a significant state type transition which stabilized from 1 to 3 years of age. However, we also found the low abundance Treponema enterotype to be strongly associated with HFD exposure, be it during gestation/lactation or in the postweaning interval. Examination of taxonomic co‐occurrences revealed samples within the low Treponema cluster were relatively permissive (allowing for increased interactions between microbiota) whereas samples within the high Treponema cluster were relatively exclusionary (suggesting decreased interactions amongst microbiota). Taken together, these findings suggest that Treponemes are keystone species in the developing gut microbiome of the gut, and susceptible to HFD feeding in their relative abundance.  相似文献   

7.
Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade‐off with the need to engage in heat‐dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature‐dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid‐zone birds.  相似文献   

8.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   

9.
10.
In the present study, we investigated the evolution of life‐history traits in the main species of a community, after the arrival of a new competitor. Two parasitoid species, Leptopilina heterotoma and Asobara tabida, are present throughout the Rhône and Saône valleys, whereas a third species, Leptopilina boulardi, is slowly extending its distribution northwards. In the presence of L. boulardi, competing parasitoids experience a higher mortality and lower host availability. Resources should thus be re‐allocated between traits according to these new factors. We compared life‐history traits of populations of L. heterotoma and A. tabida in areas with and without L. boulardi. As predicted by both Price's balanced mortality hypothesis and the theory of life‐history traits, we found that investment in reproduction is higher in southern populations for both native species, coupled with higher travelling abilities. However, only A. tabida paid their higher fecundity by a lower longevity. The absence of a clear trade‐off between these traits in L. heterotoma may be explained by a lower metabolic rate in southern populations. These results highlight the importance of the community change over climate in the evolution of life‐history traits in this parasitoid community. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

11.
The O(6)-methylguanine-DNA-methyltransferase (MGMT) inactivator O(6)-benzylguanine (O(6)-beG) is currently under clinical investigation as a potential tumour-sensitising agent. In clinical trials its use has been associated with increased myelotoxicity and a reduced maximum tolerated dose (MTD) for BCNU. Thus the concept of myeloprotection by gene therapy with an O(6)-beG-insensitive mutant of MGMT is soon to be tested. Recently, an alternative inactivator has been described (O(6)-(4-bromothenyl)guanine, PaTrin-2), which shows potential advantages over O(6)-beG in terms of higher activity against wild-type MGMT and oral formulation. The use of PaTrin-2 has also been associated with increased myelotoxicity in clinical trials and thus PaTrin-2 may also be a candidate for use in conjunction with mutant MGMT gene transfer in genetic chemoprotective strategies. However, its activity against mutant MGMTs has not been reported. We show here that the P(140)K mutant of MGMT is highly resistant to inactivation by PaTrin-2. Furthermore, we show that a human haemopoietic cell line (K562) transduced with a retroviral vector encoding MGMT(P140K) is highly resistant to the cytotoxic effects of PaTrin-2 in combination with the methylating agent temozolomide, and that cells expressing MGMT(P140K) can be effectively enriched in vitro following challenge with this drug combination. Finally, we show that animals reconstituted with bone marrow expressing MGMT(P140K) exhibit haemopoietic resistance to PaTrin-2/temozolomide, which results in in vivo selection of gene-modified cells. All of these effects were comparable to those also achieved using O(6)-beG/temozolomide. Thus our data show that MGMT(P140K) is a suitable candidate for chemoprotective gene therapy where PaTrin-2 is being used in conjunction with temozolomide.  相似文献   

12.
From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO2 concentrations from 270 to 400 mol mol?1. The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free‐air CO2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO2 partial pressure (ci) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO2 concentrations. Our data set, which includes a 115‐year‐long selection of grasses collected in New Mexico since 1892, is consistent with an increased ci as a response to historical CO2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ13C (r2 = 0.32, P < 0.01) before 1950, with no correlation (r2 = 0.00, P = 0.91) after 1950. These results indicate that increased ci may have conferred some drought resistance to these grasses through increased availability of CO2 in the event of reduced stomatal conductance in response to short‐term water shortage. Comparison with C3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO2 while wetter environments see increased ci. This study suggests that (i) the observed increases in ci in FACE experiments are consistent with historical CO2 increases and (ii) the CO2 increase influences plant sensitivity to water shortage, through either increased WUE or ci in arid and wet environments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号