首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

2.
Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems.  相似文献   

3.
Ecological speciation is the evolution of reproductive isolation as a direct or indirect consequence of divergent natural selection. Reduced performance of hybrids in nature is thought to be an important process by which natural selection can favor the evolution of assortative mating and drive speciation. Benthic and limnetic sympatric species of threespine stickleback (Gasterosteus aculeatus) are adapted to alternative trophic niches (bottom browsing vs. open water planktivory, respectively) and reduced feeding performance of hybrids is thought to have contributed to the evolution of reproductive isolation. We tested this “hybrid‐disadvantage hypothesis” by inferring growth rates from otoliths sampled from wild, free‐ranging benthic, limnetic, and hybrid sticklebacks in two lakes. There were significant differences in growth rate between lakes, life‐history stages, and among years (maximum P = 0.02), as well as interactions between most factors, but not between hybrid and parental species sticklebacks in most comparisons. Our results provide little evidence of a growth disadvantage in hybrid sticklebacks when free‐ranging in nature. Although trophic ecology per se may contribute less to ecological speciation than envisioned, it may act in concert with other aspects of stickleback biology, such as interactions with parasites, predators, competitors, and/or sexual selection, to present strong multifarious selection against hybrids.  相似文献   

4.
Ecological selection against hybrids between populations occupying different habitats might be an important component of reproductive isolation during the initial stages of speciation. The strength and directionality of this barrier to gene flow depends on the genetic architecture underlying divergence in ecologically relevant phenotypes. We here present line cross analyses of inheritance for two key foraging-related morphological traits involved in adaptive divergence between stickleback ecotypes residing parapatrically in lake and stream habitats within the Misty Lake watershed (Vancouver Island, Canada). One main finding is the striking genetic dominance of the lake phenotype for body depth. Selection associated with this phenotype against first- and later-generation hybrids should therefore be asymmetric, hindering introgression from the lake to the stream population but not vice versa. Another main finding is that divergence in gill raker number is inherited additively and should therefore contribute symmetrically to reproductive isolation. Our study suggests that traits involved in adaptation might contribute to reproductive isolation qualitatively differently, depending on their mode of inheritance.  相似文献   

5.
Sexual selection against viable, fertile hybrids may contribute to reproductive isolation between recently diverged species. If so, then sexual selection may be implicated in the speciation process. Laboratory measures of the mating success of hybrids may underestimate the amount of sexual selection against them if selection pressures are habitat specific. Male F1 hybrids between sympatric benthic and limnetic sticklebacks (Gasterosteus aculeatus complex) do not suffer a mating disadvantage when tested in the laboratory. However, in the wild males choose different microhabitats and parental females tend to be found in the same habitats as conspecific males. This sets up the opportunity for sexual selection against male hybrids because they must compete with parental males for access to parental females. To test for sexual selection against adult F1 hybrid males, we examined their mating success in enclosures in their preferred habitat (open, unvegetated substrate) where limnetic males and females also predominate. We found significantly reduced mating success in F1 hybrid males compared with limnetic males. Thus, sexual selection, like other mechanisms of postzygotic isolation between young sister species, may be stronger in a wild setting than in the laboratory because of habitat-specific selection pressures. Our results are consistent with, but do not confirm, a role for sexual selection in stickleback speciation.  相似文献   

6.
New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near‐complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.  相似文献   

7.
8.
We use an individual-based numerical simulation to study the effects of phenotypic plasticity on ecological speciation. We find that adaptive plasticity evolves readily in the presence of dispersal between populations from different ecological environments. This plasticity promotes the colonization of new environments but reduces genetic divergence between them. We also find that the evolution of plasticity can either enhance or degrade the potential for divergent selection to form reproductive barriers. Of particular importance here is the timing of plasticity in relation to the timing of dispersal. If plasticity is expressed after dispersal, reproductive barriers are generally weaker because plasticity allows migrants to be better suited for their new environment. If plasticity is expressed before dispersal, reproductive barriers are either unaffected or enhanced. Among the potential reproductive barriers we considered, natural selection against migrants was the most important, primarily because it was the earliest-acting barrier. Accordingly, plasticity had a much greater effect on natural selection against migrants than on sexual selection against migrants or on natural and sexual selection against hybrids. In general, phenotypic plasticity can strongly alter the process of ecological speciation and should be considered when studying the evolution of reproductive barriers.  相似文献   

9.
Speciation can be viewed as a continuum, potentially divisible into several states: (1) continuous variation within panmictic populations, (2) partially discontinuous variation with minor reproductive isolation, (3) strongly discontinuous variation with strong but reversible reproductive isolation and (4) complete and irreversible reproductive isolation. Research on sticklebacks (Gasterosteidae) reveals factors that influence progress back and forth along this continuum, as well as transitions between the states. Most populations exist in state 1, even though some of these show evidence of disruptive selection and positive assortative mating. Transitions to state 2 seem to usually involve strong divergent selection coupled with at least a bit of geographic separation, such as parapatry (e.g. lake and stream pairs and mud and lava pairs) or allopatry (e.g. different lakes). Transitions to state 3 can occur when allopatric or parapatric populations that evolved under strong divergent selection come into secondary contact (most obviously the sympatric benthic and limnetic pairs), but might also occur between populations that remained in parapatry or allopatry. Transitions to state 4 might be decoupled from these selective processes, because the known situations of complete, or nearly complete, reproductive isolation (Japan Sea and Pacific Ocean pair and the recognized gasterosteid species) are always associated with chromosomal rearrangements and environment‐independent genetic incompatibilities. Research on sticklebacks has thus revealed complex and shifting interactions between selection, adaptation, mutation and geography during the course of speciation.  相似文献   

10.
Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks.  相似文献   

11.
Although reinforcement should enhance reproductive barriers in sympatric species, sympatric trout species do hybridize. Using mitochondrial and nuclear species markers, we investigated hybridization directionality, hybrid mating biases, and selection against hybrids in 13 sympatric cut-throat and rainbow trout populations on Vancouver Island, Canada. Approximately 50% of the genotyped fish were hybrid (F1 or higher-order) and populations ranged from very recent (all F1 hybrids) to extremely advanced higher-order hybridization. Overall, interbreeding was reciprocal, although some populations showed directional hybridization. Pronounced cytonuclear disequilibrium in post-F1 hybrids indicated a remarkable mating bias not previously reported, which is most likely because of behavioural reproductive preferences. Selection against hybrids was observed in only two populations, indicative of extrinsic selection. Two populations were 'hybrid swarms', with a complete loss of reproductive isolation. The complex hybridization dynamics in this system represent a valuable natural experiment of the genetic and evolutionary implications of recent and on-going interspecific hybridization.  相似文献   

12.
Molecular comparisons of populations diverging into ecologically different environments often reveal strong differentiation in localized genomic regions, with the remainder of the genome being weakly differentiated. This pattern of heterogeneous genomic divergence, however, is rarely connected to direct measurements of fitness differences among populations. We here do so by performing a field enclosure experiment in threespine stickleback fish residing in a lake and in three replicate adjoining streams, and displaying weak yet heterogeneous genomic divergence between these habitats. Tracking survival over 29 weeks, we consistently find that lake genotypes transplanted into the streams suffer greatly reduced viability relative to local stream genotypes and that the performance of F1 hybrid genotypes is intermediate. This observed selection against migrants and hybrids combines to a total reduction in gene flow from the lake into streams of around 80%. Overall, our study identifies a strong reproductive barrier between parapatric stickleback populations, and cautions against inferring weak fitness differences between populations exhibiting weak overall genomic differentiation.  相似文献   

13.
Reproductive barriers are important determinants of gene flow between divergent populations or species. We studied pollen competition as a post‐mating reproductive barrier between Silene dioica and S. latifolia. Gene flow between these species is extensive, but early‐generation hybrids are rare. In an experiment with conspecific, heterospecific and 50 : 50 mixed pollinations in the two species, pollination treatments did not significantly affect seed set and seed weight. However, molecular determination of siring success after mixed pollinations showed that fewer than expected hybrids were produced in S. latifolia (18% hybrids) but not in S. dioica (51% hybrids). This constitutes an asymmetric post‐mating reproductive barrier and likely contributes to the rarity of early‐generation hybrids. Our study shows that pollen competition can be an effective barrier to hybridization between closely related species that likely acts in concert with other reproductive barriers.  相似文献   

14.
Genetic divergence between populations is shaped by a combination of drift, migration, and selection, yielding patterns of isolation‐by‐distance (IBD) and isolation‐by‐environment (IBE). Unfortunately, IBD and IBE may be confounded when comparing divergence across habitat boundaries. For instance, parapatric lake and stream threespine stickleback (Gasterosteus aculeatus) may have diverged due to selection against migrants (IBE), or mere spatial separation (IBD). To quantitatively partition the strength of IBE and IBD, we used recently developed population genetic software (BEDASSLE) to analyze partial genomic data from three lake‐stream clines on Vancouver Island. We find support for IBD within each of three outlet streams (unlike prior studies of lake‐stream stickleback). In addition, we find evidence for IBE (controlling for geographic distance): the genetic effect of habitat is equivalent to geographic separation of ~1.9 km of IBD. Remarkably, of our three lake‐stream pairs, IBE is strongest where migration between habitats is easiest. Such microgeographic genetic divergence would require exceptionally strong divergent selection, which multiple experiments have failed to detect. Instead, we propose that nonrandom dispersal (e.g., habitat choice) contributes to IBE. Supporting this conclusion, we show that the few migrants between habitats are a nonrandom subset of the phenotype distribution of the source population.  相似文献   

15.
In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by‐product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the – to our knowledge – first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post‐mating, pre‐ and post‐zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross‐experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post‐mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post‐mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers.  相似文献   

16.
One-allele isolating mechanisms should make the evolution of reproductive isolation between potentially hybridizing taxa easier than two-allele mechanisms, but the generality of one-allele mechanisms in nature has yet to be established. A potentially important one-allele mechanism is sexual imprinting, where the mate preferences of individuals are based on the phenotype of their parents. Here I test the possibility that sexual imprinting promotes reproductive isolation using sympatric species of threespine sticklebacks (Gasterosteus aculeatus). Sympatric species of sticklebacks consist of large benthic species and small limnetic species that are reproductively isolated and adapted to feeding in different environments. I fostered families of F1 hybrids between the species to males of both species. Preferences of these fostered females for males of either type revealed little or no effect of sexual imprinting on assortative mating. However, F1 females showed preferences for males that were similar to themselves in length, suggesting that size-assortative mating may be more important than sexual imprinting for promoting reproductive isolation between species pairs of threespine sticklebacks.  相似文献   

17.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback.  相似文献   

18.
Polyploidy has played an important role in angiosperm diversification, but how polyploidy contributes to reproductive isolation remains poorly understood. Most work has focused on postzygotic reproductive barriers, and the influence of ploidy differences on prezygotic barriers is understudied. To address these gaps, we quantified hybrid occurrence, interspecific self‐compatibility differences, and the contributions of multiple pre‐ and postzygotic barriers to reproductive isolation between diploid Erythronium mesochoreum (Liliaceae) and its tetraploid congener Erythronium albidum. Reproductive isolation between the study species was nearly complete, and naturally occurring hybrids were infrequent and largely sterile. Although postzygotic barriers effected substantial reproductive isolation when considered in isolation, the study species’ spatial distributions and pollinator assemblages overlapped little, such that interspecific pollen transfer is likely uncommon. We did not find evidence that E. albidum and E. mesochoreum differed in mating systems, indicating that self‐incompatibility release may not have fostered speciation in this system. Ultimately, we demonstrate that E. albidum and E. mesochoreum are reproductively isolated by multiple, hierarchically‐operating barriers, and we add to the currently limited number of studies demonstrating that early acting barriers such as pollinator‐mediated isolation can be important for effecting and sustaining reproductive isolation in diploid‐polyploid systems.  相似文献   

19.
Reproductive barriers reduce gene flow between populations and maintain species identities. A diversity of barriers exist, acting before, during and after mating. To understand speciation and coexistence, these barriers need to be quantified and their potential interactions revealed. We use the hybridising field crickets Gryllus bimaculatus and G. campestris as a model to understand the full compliment and relative strength of reproductive barriers. We find that males of both species prefer conspecific females, but the effect is probably too weak to represent a barrier. In contrast, prezygotic barriers caused by females being more attracted to conspecific male song and preferentially mounting and mating with conspecifics are strong and asymmetric. Postzygotic barriers vary in direction; reductions in fecundity and egg viability create selection against hybridisation, but hybrids live longer than pure-bred individuals. Hybrid females show a strong preference for G. bimaculatus songs, which together with a complete lack of hybridisation by G. campestris females, suggests that asymmetric gene flow is likely. For comparison, we review reproductive barriers that have been identified between other Gryllids and conclude that multiple barriers are common. Different species pairs are separated by qualitatively different combinations of barriers, suggesting that reproductive isolation and even the process of speciation itself may vary widely even within closely related groups.  相似文献   

20.
Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three‐spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three‐spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号