首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae), is a key pest of cotton, Gossypium hirsutumL. (Malvaceae). Knowledge about boll weevil feeding and oviposition behavior and its response to plant volatiles can underpin our understanding of host plant resistance, and contribute to improved monitoring and mass capture of this pest. Boll weevil oviposition preference and immature development in four cotton genotypes (CNPA TB90, TB85, TB15, and BRS Rubi) were investigated in the laboratory and greenhouse. Volatile organic compounds (VOCs) produced by TB90 and Rubi genotypes were obtained from herbivore‐damaged and undamaged control plants at two phenological stages – vegetative (prior to squaring) and reproductive (during squaring) – and four collection times – 24, 48, 72, and 96 h following herbivore damage. The boll weevil exhibited similar feeding and oviposition behavior across the four tested cotton genotypes. The chemical profiles of herbivore‐damaged plants of both genotypes across the two phenological stages were qualitatively similar, but differed in the amount of volatiles produced. Boll weevil response to VOC extracts was studied using a Y‐tube olfactometer. The boll weevil exhibited similar feeding and oviposition behavior at the four tested cotton genotypes, although delayed development and production of smaller adults was found when fed TB85. The chemical profile of herbivore‐damaged plants of both genotypes at the two phenological stages and time periods (24–96 h) was similar qualitatively, with 30 identified compounds, but differed in the amount of volatiles produced. Additionally, boll weevil olfactory response was positive to herbivory‐induced volatiles. The results help to understand the interaction between A. grandis and cotton plants, and why it is difficult to obtain cotton genotypes possessing constitutive resistance to this pest.  相似文献   

2.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

3.
Evidence of poor correspondence between an insect herbivore’s oviposition preferences and the performance of its offspring has generally been attributed either to maladaptive behavior of the insect mother or inadequate measurement by the researcher. In contrast, we hypothesize that many cases of “bad mothers” in herbivores may be a byproduct of the hierarchical way natural selection works on resistance in host plants. Epistatic selection on the components of resistance (i.e., antixenosis and antibiosis) may generate negative genetic correlations between the resistance components, which could counteract the efforts of herbivores to oviposit on the best hosts for the performance of their offspring. In common garden and greenhouse experiments, we measured aspects of antixenosis and antibiosis resistance in 26 genets of tall goldenrod, Solidago altissima, against two common herbivores: the gall-inducing fly Eurosta solidaginis and the spittlebug Philaenus spumarius. Goldenrod antixenosis and antibiosis were positively correlated against E. solidaginis and negatively correlated against P. spumarius. Analogously, population-wide preference–performance correlations were positive for the gall flies and negative for the spittlebugs. Several natural history differences between the two insects could make gall flies better mothers, including better synchrony of the phenologies of the flies and the host plant, the much narrower host range of the gall flies than the spittlebugs, and the more sedentary lifestyle of the gall fly larvae than the spittlebug nymphs. If these results are typical in nature, then negative genetic correlations in antixenosis and antibiosis in plants may often result in zero or negative population-wide correlations between preference and performance in herbivores, and thus may be an important reason why herbivorous insects often appear to be bad mothers.  相似文献   

4.
Larvae of Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) often infest soybean crops, Glycine max (L.) (Fabaceae), causing significant yield losses in important soybean-producing regions. The use of soybean varieties resistant to lepidopteran larvae is a major approach in soybean integrated pest management. However, standardization and optimization of bioassays that are used to screen genotypes for insect resistance are essential for high-throughput phenotyping. Methodologies for screening were assessed to determine the most effective method for discriminating levels of antixenosis to H. virescens in soybean plants. Feeding and oviposition preference assays were performed to determine optimal densities of larvae and adults, and optimal plant structures and growth stages for conducting assays. In addition, trichome densities, and fiber and lignin contents were quantified in plant structures of soybean cultivars differing in resistance. Resistance levels of cultivars were best differentiated using nine neonate larvae and two 6-day-old larvae, and by using young leaves of plants at the vegetative stage. This was likely due to the more pronounced differences in lignin and fiber contents in young leaves of vegetative-stage plants. Density of adult pairs, plant structure, and growth stage did not affect ability to distinguish differences in oviposition preference by H. virescens. Higher numbers of eggs were found on the leaves, which were the plant structures that exhibited the lowest trichome densities. The protocol developed in this work will benefit future evaluations of soybean genotypes for antixenosis against H. virescens.  相似文献   

5.
The noctuid pod borer, Helicoverpa armigera is a major pest of chickpea, and host plant resistance is an important component for managing this pest. We evaluated a set of diverse chickpea genotypes with different levels of resistance to H. armigera, and their F1 hybrids for oviposition non-preference, antibiosis, and tolerance components of resistance under uniform insect infestation under greenhouse/laboratory conditions. The genotypes ICC 12476, ICC 12477, ICC 12478, ICC 12479, and ICC 506EB were non-preferred for oviposition under no-choice, dual-choice, and multi-choice conditions, and also suffered lower leaf damage in no-choice tests as compared to the susceptible check, ICCC 37. Antibiosis expressed in terms of low larval weights was observed in insects reared on ICC 12476, ICC 12478, and ICC 506EB. Weight gain by the third-instars was also low on ICC 12476, ICC 12477, ICC 12478, ICC 12479, and ICC 506EB at the podding stage. Non-preference for oviposition and antibiosis (poor larval growth) were also expressed in hybrids based on ICC 12477, ICC 12476, ICC 12478, ICC 12479, and ICC 506EB as compared to the hybrids based on the susceptible check, ICCC 37, indicating that oviposition non-preference and antibiosis in the F1 hybrids is influenced by the parent genotype. Loss in grain yield was lower in ICC 12477, ICC 12478, ICC 12479, and ICC 506EB compared to that on ICCC 37. The genotypes ICC 12477, ICC 12478, ICC 12479, and ICC 506EB showing antixenosis, antibiosis, and tolerance mechanism of resistance to H. armigera can be used for developing chickpea cultivars for resistance to this pest.  相似文献   

6.
Tagosodes orizicolus is one of the main plagues of rice in tropical America causing two types of damages, the direct one, feeding and oviposition effect, and an indirect one, by the transmission of the "Rice hoja blanca virus". During 2006-2007 we carried out research under greenhouse conditions at Fundaci6n Danac, Venezuela, in order to determine the mechanisms of antixenosis, antibiosis and tolerance to T. orizicolus, which could be acting in commercial varieties and advanced lines of the rice genetic breeding programs of INIA and Fundaci6n Danac. The method of free feeding was used for the antixenosis evaluation, whereas the method of forced feeding was used for antibiosis evaluation (effect on survival and oviposition). Additionally, we used the indirect method based on biomass depression to estimate the tolerance. Some of the evaluated traits included: grade of damage, number of insects settling on rice plants, percentage of sogata mortality at the mature state, number of eggs in the leaf midrib and an index of tolerance. The results showed that rice genotypes possess different combinations of resistance mechanisms, as well as different grades of reactions. The susceptible control 'Bluebonnet 50' was consistently susceptible across experiments and the resistant control 'Makalioka' had high antixenosis and high antibiosis based on survival and oviposition. The rest of the genotypes presented lower or higher degrees of antixenosis and antibiosis for survival and oviposition. The genotype 'FD0241-M-17-6-1-1-1-1' was identified with possible tolerance to the direct damage of sogata.  相似文献   

7.
Six cabbage (Brassica oleracea var. capitata) varieties with different levels of resistance to Mamestra brassicae (Lepidoptera: Noctuidae) were investigated in order to assess whether antibiosis and antixenosis mechanisms are involved in the resistance to this pest or not. Four experiments were conducted to determine the effect of variety and plant ontogeny on larval behaviour, adult oviposition and leaf damages in non‐choice and choice tests. Larval survival, time to development and larval weights differed depending on the varieties and plant stages that we tested. At the pre‐head stage, larval mortality was higher, larvae died faster, time to pupation was shorter, pupae were lighter and the percentage of viable pupae and growth index (GI) values were lower than larvae reared from plants at the head stage. The commercial hybrid ‘Corazón de buey’ and the local variety named ‘BRS0535’ exhibited antibiosis to M. brassicae as they reduced its survival and growth and delayed its development time. In addition, these varieties were the most resistant after artificial infestation in terms of head foliage consumption and number of larvae per plant. Oviposition tests demonstrated that resistance found in ‘Corazón de buey’ and BRS0535 could be also based on antixenosis mechanisms as they resulted in fewer egg batches on plants, whereas BRS0402 could be classified as resistant because M. brassicae larvae showed less preference for it. Thus, resistance to M. brassicae found in cabbage crops may be due to the joint action of several factors involving antibiosis and antixenosis. We found significant differences in the resistance of BRS0535 depending on the plant ontogeny as it loses its resistance while developing. Further studies are required to identify the mechanism of antibiotic resistance which is present in this variety at the pre‐head stage and the changes that occur in plant defence as it grows.  相似文献   

8.
Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) is an important pest of vegetable crops, including collard greens Brassica oleracea var. acephala (Brassicaceae). The use of resistant genotypes is an interesting option to reduce insect populations and can be used as an important tool for integrated pest management (IPM). This study evaluated 32 genotypes of collard greens against the attack of silver leaf whitefly, with the aim to characterize antixenosis. Initially, a multiple-choice trial was conducted using all genotypes, in which the adult attractiveness was assessed on two leaves per genotype at 24 and 48 h after infestation. After 48 h, one leaf of each genotype was randomly selected for the determination of the number of eggs per square centimeter. From the results of the multiple-choice trial, 13 genotypes were selected for a no-choice oviposition test, following the same method of the previous test. Colorimetric analyses were also performed to establish possible correlations between leaf color and insect colonization. Genotypes HS-20, OE, and VA were less attractive, demonstrating antixenosis. Genotypes LG, VE, J, MG, MOP, HS-20, VA, and MT had less oviposition in the multiple-choice test, which indicated expression of antixenosis. In the no-choice test, genotypes VE, P1C, CCB, RI-919, H, and J had less oviposition, which also characterized antixenosis. Therefore, genotypes VE and J showed the highest resistance stability because both had less oviposition in both test modalities. Thus, the resistance to B. tabaci biotype B indicates the genotypes HS-20, OE, VA, VE, and J are promising for use in breeding programs to develop resistance to whitefly.  相似文献   

9.
The striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an important pest afflicting rice in most rice-growing countries in the world. Deliniating the categories of resistance in rice genotypes under field conditions could be helpful in managment of this pest. Two categories of resistance, antixenosis and antibiosis, were examined in ten popular and diverse rice genotypes of different origin that had been selected for their resistance to the striped stem borer in a previous study. Significant differences were found between genotypes for the number of egg masses, number of eggs, preference index, larval and pupal weight, larval development time, larval survival rate, larval mine length, and leaf trichome density. It was found that the rice genotypes Novator, A7801, and Nemat had the more pronounced antixenosis-type resistance, whereas AB1 and Shirodi had better antiobiosis-type resistance. Interestingly, the rice genotype AN-74 for which Nemat is the parental line showed both types of resistance and could be effectively used in an integrated pest management of the rice striped stem borer.  相似文献   

10.
The cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), is a new invasive pest of cereals in western Canada. Host plant resistance is a potential option in the integrated management of this insect. Wheat (Triticum aestivum L.) genotypes are known to possess antixenosis against O. melanopus; however, mechanisms involving antibiosis are relatively less explored. We present results of an investigation exploring antibiotic resistance in wheat germplasm of Central Asian origin with putative resistance to O. melanopus. Our laboratory assessment of development and survivorship of O. melanopus on test genotypes indicated antibiotic properties in four of the six genotypes evaluated. Antibiosis effects were reflected through lower survivorship, extended developmental periods and low adult fitness. However, two genotypes were excellent hosts, and beetles had higher survivorship and fitness on them. The performance of O. melanopus on these two genotypes was comparable to that on the susceptible genotype CDC GO included as a check. The genotypes with antibiotic resistance identified by this research can now serve as sources of genetic resistance for breeding cultivars adapted to western Canadian conditions.  相似文献   

11.
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects.  相似文献   

12.
The preference‐performance or ‘mother‐knows‐best’ hypothesis states that female insects choose to oviposit on a host plant that increases the performance of their offspring. This positive link between host plant choice and larval performance is especially important for leaf miners with non‐motile larvae that are entirely dependent upon the oviposition choice of the female for host plant location. Preference and performance of the ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), a specialist on ash trees, Fraxinus spp. (Oleaceae), were tested in a series of laboratory and field experiments. Female C. fraxinella were exposed to two closely related hosts, black ash, Fraxinus nigra Marshall, and green ash, Fraxinus pennsylvanica Marshall var. subintegerrima (Vahl), in oviposition choice and wind tunnel flight experiments to determine which host is most attractive for oviposition. Caloptilia fraxinella females were inconsistent in host choice, yet performance of larvae was greater on green than black ash. In preference studies, C. fraxinella preferred to oviposit on black ash when leaflets were removed from the tree, but preferred intact green ash over black ash seedlings for oviposition and host location in a wind tunnel. In the field, however, more C. fraxinella visited black ash var. ‘Fallgold’ at leaf flush than green ash at the same sites. Age of the ash leaflet also influences oviposition in this leaf miner and females preferred new over old leaflets for oviposition. Performance of C. fraxinella larvae was evaluated in field and laboratory experiments and was greater on green ash than on black ash in both experiments based on larval survival and development time parameters. The stronger oviposition and host location preference in the field for black ash were not linked to enhanced performance of offspring, as green ash was the superior host, supporting higher larval survival and faster development. A stronger host location preference in the wind tunnel for green ash over black ash, however, suggests that under certain circumstances with this moth species, ‘mother (may) know best’.  相似文献   

13.
Tomatoes of the Micro-Tom cultivar, Solanum lycopersicum L. (Solanaceae), are small, have a short life cycle, high-density growth, high-efficiency protocols for genetic transformation, and hormonal and morphological mutants. These characteristics make this cultivar a good candidate as a helpful tool in resistance studies against the whitefly, Bemisia tabaci (Gennadius 1889) (Hemiptera: Aleyrodidae). The insect behavior in the Micro-Tom cultivar was observed through free-choice and no-choice oviposition preference tests and life cycle in lab conditions, having as reference the Santa Clara cultivar. In these tests, behavioral and biological insect parameters were obtained and the purpose was used to assess the trichome absence effect on oviposition with the hairless mutant. In the studies for oviposition preference, no difference was observed among the three material obtained. A nymphal stage prolongation and a low nymph viability with an adult longevity reduction were observed in relation to the Santa Clara in the Micro-Tom cultivar and hairless mutant. The Micro-Tom cultivar and hairless mutant do not present antixenotic effects to the oviposition. Mutation present in the hairless mutant does not alter the results observed in the ‘Micro-Tom.’ In general, the absence of the trichome did not reduce the Micro-Tom susceptibility to the oviposition. Antibiosis was observed in the Micro-Tom and it was discussed considering its association with salicylic and jasmonic acids, and brassinosteroid levels. These results show that this cultivar is a pest host and suitable for greenhouse and lab tests, in addition to being able to be used as a susceptibility standard for antixenosis.  相似文献   

14.
Host plant resistance and biological control are vital integrated pest management tools against the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), but to date no study has investigated this system including the DBM parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae). We examined oviposition and development of P. xylostella exposed to two commercial cabbage cultivars (green ‘Chato de quintal’ and red ‘Roxo’) and possible effects upon O. sokolowskii. Under free‐choice tests, DBM females laid significantly more eggs on plants of the green cabbage, even though several population growth parameters showed that DBM developed better on the red cabbage. Furthermore, a laboratory free‐choice test with artificially green‐ and red‐painted kale leaf discs demonstrated a similar oviposition preference pattern, with green colour being preferred over red colour. The preference was apparently visually mediated; olfactometer tests showed similar attraction of moths to both green and red cultivars in choice and non‐choice tests. Host plant cultivar had no statistically significant effect on female parasitoid behaviour towards DBM larvae, nor on parasitoid numbers or longevity. Moreover, wasps parasitizing DBM larvae reared on the green cultivar developed more quickly and in larger numbers per parasitized larva. Thus, feeding on green cabbage rather than red does not hinder, and potentially even enhances, control of DBM by O. sokolowskii. On a practical level, these results suggest that intercalating green cabbage cultivars as a trap crop might help protect more profitable red cultivars in growing fields.  相似文献   

15.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

16.
Canola genotypes resistant to the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), have recently been developed through introgression of Sinapis alba L. to Brassica napus L. Several lines express antixenosis and antibiosis resistance and have been shown to be less attractive to weevils in visual and olfactory behavioral bioassays. This paper details a small-plot study that assessed the effects on distribution dynamics of weevil adults and larvae of interspersing susceptible among resistant genotypes relative to monocultures over two growing seasons. Results indicate that mixes reduced weevil numbers and oviposition in pods of susceptible genotypes. These results are consistent with associational resistance.  相似文献   

17.
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD‐associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD‐infested Mac7 and validated RNA‐Seq data with qPCR on 24 independent genes. We performed co‐expression network and pathway analysis for regulation of geminivirus/betasatellite‐interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co‐expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite‐interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus‐induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub‐genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.  相似文献   

18.
Brazil is one of the world's largest tomato producer, but considerable part of the production is lost due to the attack of Bemisia tabaci (Genn.) B biotype. Resistant germoplasm plants can be an important method for B. tabaci control in integrated pest management approaches. The attractiveness and ovipositional preference of B. tabaci for 17 tomato genotypes were evaluated in a free-choice test. Trials were set up in a randomized block design with ten replicates. Each replicate (one tomato plant per pot) was placed in a cage (80 x 50 x 50 cm) and infested with 1,000 adults during four days. Linear correlation tests were applied between the number of insects and eggs and number of trichomes in each tomato genotype. LA716, LA444-1 and PI134418 genotypes were the least attractive, while the 'Santa Clara' was the most attractive; PI134417 trapped the largest number of adults. LA716 genotype (4.1 eggs/leaflet and 2.1 cm2/eggs per leaflet) was the least preferred for whitefly oviposition; NAV1062, 'Fanny', LA1335, 'Santa Clara' and IAC294 were the most preferred genotypes. The glandular trichomes density was negatively correlated with whitefly's attractiveness and oviposition per leaflet and per leaf, and positively with the number of trapped insects. The non-glandular trichomes density was negatively correlated with the number of trapped insects and positively with whitefly's oviposition per cm2/leaflet andper cm2/leaf. LA716 had high antixenosis level (ovipositional nonpreference) toward B. tabaci B biotype related with type IV glandular trichome.  相似文献   

19.
Quantitative trait loci (QTLs) for yield and drought related physiological traits, osmotic potential (OP), carbon isotope ratio (δ13C, an indicator of water use efficiency), and leaf chlorophyll content (Chl), were exchanged via marker-assisted selection (MAS) between elite cultivars of the two cotton species Gossypium barbadense cv. F-177 and G. hirsutum cv. Siv’on. The resulting near isogenic lines (NILs) were examined in two field trials, each with two irrigation regimes, in order to (1) evaluate the potential to improve cotton drought resistance by MAS and (2) test the role of physiological traits in plant productivity. NILs introgressed with QTLs for high yield rarely exhibited an advantage in yield relative to the recipient parent, whereas a considerable number of NILs exhibited the expected phenotype in terms of lower OP (5 out of 9), higher δ13C (4 out of 6) or high Chl (2 out of 3). Several NILs exhibited considerable modifications in non-targeted traits including leaf morphology, stomatal conductance and specific leaf weight (SLW). In G. barbadense genotypes, yield was correlated negatively with δ13C and OP and positively with stomatal conductance, SLW and Chl, whereas in G. hirsutum yield was negatively correlated with δ13C, SLW and Chl. This dissimilarity suggests that each of the respective species has evolved different mechanisms underlying plant productivity. We conclude that the improvement of drought related traits in cotton NILs may lead to improved drought resistance via MAS, but that conventional breeding may be necessary to combine the introduced QTL(s) with high yield potential.  相似文献   

20.
The cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is distributed throughout the tropical and subtropical areas of the world. The main crops attacked by B. brassicae are cabbage, collard greens, broccoli, Brussels sprouts, and cauliflower. To survive the attack of pest insects, plants have evolved various resistance mechanisms that may affect pest feeding behavior. The use of electronic monitoring through EPG (electrical penetration graph) can help characterize and distinguish the resistance mechanisms involved. This study evaluated the feeding behavior of B. brassicae in eight genotypes of collard greens, Brassica oleraceae L. var. acephala (Brassicaceae), exhibiting antixenosis and/or antibiosis resistance to this insect. Possible correlations were established between the glucosinolate levels, the hardness, and the epicuticular wax on the leaves vs. aphid feeding behavior. On the genotypes 22V, 5E, and 27VA, for which many ‘potential drop’ waves were performed, aphid development was slower, indicating antixenosis as resistance type. Aphids on the genotypes 22V and 24X required more time until accessing the phloem, also suggesting antixenosis as resistance category. Genotypes 22V and PE had hard leaves, which also points at antixenosis. Genotypes 20T and HS had higher total wax and wax mg−1. Feeding parameters on ARI and 24X were similar to those observed on HS; antibiosis is likely to be the predominant resistance category of this germplasm. Because HS was considered as a susceptible standard genotype in this study, a higher gluconapin amount indicates that this compound does not influence cabbage aphid feeding behavior. The present study confirms that analysis of the physical and chemical aspects of collard greens genotypes by the EPG technique can provide a useful approach for the study of plant resistance to cabbage aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号