首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The masticatory musculature of rodents has evolved to enable both gnawing at the incisors and chewing at the molars. In particular, the masseter muscle is highly specialised, having extended anteriorly to originate from the rostrum. All living rodents have achieved this masseteric expansion in one of three ways, known as the sciuromorph, hystricomorph and myomorph conditions. Here, we used finite element analysis (FEA) to investigate the biomechanical implications of these three morphologies, in a squirrel, guinea pig and rat. In particular, we wished to determine whether each of the three morphologies is better adapted for either gnawing or chewing. Results show that squirrels are more efficient at muscle-bite force transmission during incisor gnawing than guinea pigs, and that guinea pigs are more efficient at molar chewing than squirrels. This matches the known diet of nuts and seeds that squirrels gnaw, and of grasses that guinea pigs grind down with their molars. Surprisingly, results also indicate that rats are more efficient as well as more versatile feeders than both the squirrel and guinea pig. There seems to be no compromise in biting efficiency to accommodate the wider range of foodstuffs and the more general feeding behaviour adopted by rats. Our results show that the morphology of the skull and masticatory muscles have allowed squirrels to specialise as gnawers and guinea pigs as chewers, but that rats are high-performance generalists, which helps explain their overwhelming success as a group.  相似文献   

2.
Abstract Among vertebrates, there is often a tight correlation between variation in cranial morphology and diet. Yet, the relationships between morphological characteristics and feeding performance are usually only inferred from biomechanical models. Here, we empirically test whether differences in body dimensions are correlated with bite performance and trophic ecology for a large number of turtle species. A comparative phylogenetic analysis indicates that turtles with carnivorous and durophagous diets are capable of biting harder than species with other diets. This pattern is consistent with the hypothesis that an evolutionary increase in bite performance has allowed certain turtles to consume harder or larger prey. Changes in carapace length tend to be associated with proportional changes in linear head dimensions (no shape change). However, maximum bite force tends to change in proportion to length cubed, rather than length squared, implying that changes in body size are associated with changes in the design of the jaw apparatus. After the effect of body size is accounted for in the analysis, only changes in head height are significantly correlated with changes in bite force. Additionally, our data suggest that the ability to bite hard might trade off with the ability to feed on fast agile prey. Rather than being the direct result of conflicting biomechanical or physiological demands for force and speed, this trade‐off may be mediated through the constraints imposed by the need to retract the head into the shell for defensive purposes.  相似文献   

3.
Survival, in part, depends on an individual's ability to evade predators. In desert regions some lizard species have evolved head‐first sand‐diving strategies to escape predators. To facilitate this behaviour, a distinctive head morphology that facilitates sand‐diving has evolved. This specialised head morphology may, however, come at a cost to other ecologically relevant functions, particularly bite force. Here, we investigated the relationship between morphology and function in a southern African lacertid lizard genus, Meroles, which consists of eight species that utilise different escape strategies, including sand‐diving and running for cover. It was hypothesized that the specialised head morphology of diving species would negatively affect bite force capacity. We found that species from each escape strategy category differed significantly in head shape, but not bite force performance. A phylogenetic tree of the genus was constructed using two mitochondrial and two nuclear genes, and we conducted phylogenetic comparative analyses. One aspect of the head shape differed between the escape strategies once phylogeny was taken into account. We found that bite force may have co‐evolved with head morphology, but that there was no trade‐off between biting capacity and escape strategy in Meroles.  相似文献   

4.
The relationship between tooth roots and diet is largely unexplored, although a logical relationship between harder diets and increased root surface area is suggested. Existing studies of primates, carnivorans and phyllostomid bats have indicated a relationship between diet hardness, bite force and tooth root surface area. The goal of this study was to determine whether root surface area can act as a potential surrogate for bite force and diet in cricetid rodents. Using microcomputed tomography (microCT), tooth root morphology from six species of rodents, two grass eaters (Calomys callosus and Reithrodon auritus), two seed eaters (Phyllotis darwini and Ochrotomys nuttalli) and two insect eaters (Akodon azarae and Oxymycterus hispidus) were compared. Similar to other studies, these rodents did exhibit differences in tooth root surface area based on diet classification, but food hardness did not seem to be a factor. Grass-eating species showed significantly larger roots relative to the other diet groups (p = 0.001). Bite force was estimated using skull measurements. Seed eaters were found to have a larger bite force, followed by grass and insect eaters, though the trend did not reach statistical significance (p = 0.058). No strong relationship was found between estimated bite force and tooth root surface area. In this study, the mechanics of grass eating seem to have a stronger effect on tooth root surface area than bite force. microCT allows the nondestructive quantification of previously difficult-to-access tooth morphology; this method shows the potential for tooth roots to provide valuable dietary, behavioral and ecological information in rodents.  相似文献   

5.
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade‐offs. Here, we investigate whether a trade‐off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three‐dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade‐off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency‐specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study.  相似文献   

6.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

7.
Beavers are well-known for their ability to fell large trees through gnawing. Yet, despite this impressive behavior, little information exists on their masticatory musculature or the biomechanics of their jaw movements. It was hypothesized that beavers would have a highly efficient arrangement of the masticatory apparatus, and that gnawing efficiency would be maintained at large gape. The head of an American beaver, Castor canadensis, was dissected to reveal the masticatory musculature. Muscle origins and insertions were noted, the muscles were weighed and fiber lengths measured. Physiological cross-sectional areas were determined, and along with the muscle vectors, were used to calculate the length of the muscle moment arms, the maximum incisor bite force, and the proportion of the bite force projected along the long axis of the lower incisor, at occlusion and 30° gape. Compared to other sciuromorph rodents, the American beaver was found to have large superficial masseter and temporalis muscles, but a relatively smaller anterior deep masseter. The incisor bite force calculated for the beaver (550–740 N) was much higher than would be predicted from body mass or incisor dimensions. This is not a result of the mechanical advantage of the muscles, which is lower than most other sciuromorphs, but is likely related to the very high percentage (>96 %) of bite force directed along the lower incisor long axis. The morphology of the skull, mandible and jaw-closing muscles enable the beaver to produce a very effective and efficient bite, which has permitted beavers to become highly successful ecosystem engineers.  相似文献   

8.
The morphology and biomechanics of the vertebrate skull reflect the physical properties of diet and behaviors used in food acquisition and processing. We use phyllostomid bats, the most diverse mammalian dietary radiation, to investigate if and how changes in dietary hardness and loading behaviors during feeding shaped the evolution of skull morphology and biomechanics. When selective regimes of food hardness are modeled, we found that species consuming harder foods have evolved skull shapes that allow for more efficient bite force production. These species have shorter skulls and a greater reliance on the temporalis muscle, both of which contribute to a higher mechanical advantage at an intermediate gape angle. The evolution of cranial morphology and biomechanics also appears to be related to loading behaviors. Evolutionary changes in skull shape and the relative role of the temporalis and masseter in generating bite force are correlated with changes in the use of torsional and bending loading behaviors. Functional equivalence appears to have evolved independently among three lineages of species that feed on liquids and are not obviously morphologically similar. These trends in cranial morphology and biomechanics provide insights into behavioral and ecological factors shaping the skull of a trophically diverse clade of mammals.  相似文献   

9.
The exceptional diversity of neotropical bat communities is sustained by an intricate partitioning of available resources among the member species. Trophical specialization is considered an important evolutionary avenue towards niche partitioning in neotropical phyllostomid bats. From an ancestral insectivorous condition, phyllostomids evolved into highly specialized frugivorous, carnivorous, nectarivorous, piscivorous and even sanguivorous species. Previously, correlations between cranial morphology and trophic ecology within this group have been documented. Here, we examine the evolutionary relationships between bite force and head shape in over 20 species of bats from a single tropical savannah bat community. The results show that bite force increases exponentially with body size across all species examined. Despite the significant differences between large dietary groups using traditional analysis (i.e. non-phylogenetic) and the strong evolutionary correlations between body mass and bite force, phylogenetic analyses indicated no differences in bite performance between insectivorous, omnivorous and frugivorous bats. Comparisons of three species with highly specialized feeding habits (nectarivory, piscivory and sanguivory) with the rest of the species in the community indicate that specialization into these niches comes at the expense of bite performance and, hence, may result in a reduction of the trophic niche breadth.  相似文献   

10.
Lisa A. Shipley 《Oikos》2007,116(12):1964-1974
Organisms respond to their heterogeneous environment in complex ways at many temporal and spatial scales. Here, I examine how the smallest scale process in foraging by mammalian herbivores, taking a bite, influences plants and herbivores over larger scales. First, because cropping bites competes with chewing them, bite size influences short-term intake rate of herbivores within plant patches. On the other hand, herbivores can chew bites while searching for new ones, thus influencing the time spent vigilant and intake rate as animals move among food patches. Therefore, bite size affects how much time herbivores must spend foraging each day. Because acquiring energy is necessary for fitness, herbivores recognize the importance of bite size and select bites, patches and diets based on tradeoffs between harvesting rates, digestion, and sheering forces. In turn, induced structural defenses of plants, such as thorns, allow plants to respond immediately to herbivory by reducing bite size and thus tissue loss. Over evolutionary time, herbivores have adapted mouth morphology that allows them to maximize bite size on their primary forage plant, whereas plants faced with large mammalian herbivores have adapted structures such as divarication that minimize bite size and protect themselves from herbivory. Finally, bite size available among plant communities can drive habitat segregation and migration of larger herbivores across landscapes.  相似文献   

11.
Trade‐offs are thought to be important in constraining evolutionary divergence, as they may limit phenotypic diversification. Limbless animals that burrow head‐first have been suggested to be evolutionarily constrained in the development of a large head size and sexual head shape dimorphism because of potential trade‐offs associated with burrowing. Here we use an acontiine skink (Acontias percivali) to test for the existence of trade‐offs between traits thought to be important in burrowing (speed and force). As head size dimorphism has been shown to be limited in acontiine lizards, thus suggesting constraints on head size and shape, we additionally explore the potential for trade‐offs between burrowing and biting. Our data show that A. percivali uses a burrowing style different from those previously described for caecilians and amphisbaenians, which relies on the use of extensive lateral and dorsoventral head movements. Our data also show that animals use their entire bodies to generate force, as peak force was determined by total length only. Additionally, both bite force and the time needed to burrow into the substrate were principally determined by relative head width, suggesting a trade‐off between biting and burrow speed. Performance data were indeed suggestive of a correlation between bite force and the time needed to burrow, but additional data are needed to confirm this pattern. In summary, our data suggests that trade‐offs may exist, and may have been of crucial importance in shaping the evolution of head shape in A. percivali, and burrowing lizards more generally. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 91–99.  相似文献   

12.
BackgroundAreca (betel) nut is considered a Group 1 human carcinogen shown to be associated with other chronic diseases in addition to cancer. This paper describes the areca (betel) nut chewing trend in Guam, and health behaviors of chewers in Guam and Saipan.MethodsThe areca (betel) nut module in the Guam Behavioral Risk Factor Surveillance Survey was used to calculate the 5-year (2011–2015) chewing trend. To assess the association between areca (betel) nut chewing and health risks in the Mariana Islands, a cross-section of 300 chewers, ≥18 years old, were recruited from households in Guam and Saipan. Self-reported socio-demographics, oral health behaviors, chronic disease status, diet, and physical activity were collected. Anthropometry was measured. Only areca (betel) nut-specific and demographic information were collected from youth chewers in the household.ResultsThe 5-year areca (betel) nut chewing prevalence in Guam was 11% and increased among Non-Chamorros, primarily other Micronesians, from 2011 (7%) to 2015 (13%). In the household survey, most adult chewers (46%) preferred areca nut with betel leaf, slaked lime, and tobacco. Most youth chewers (48%) preferred areca nut only. Common adult chronic conditions included diabetes (14%), hypertension (26%), and obesity (58%).ConclusionThe 5-year areca (betel) nut chewing prevalence in Guam is comparable to the world estimate (10–20%), though rising among Non-Chamorros. Adult and youth chewers may be at an increased risk for oral cancer. Adult chewers have an increased risk of other chronic health conditions. Cancer prevention and intervention strategies should incorporate all aspects of health.  相似文献   

13.
Island environments differ with regard to numerous features from the mainland and may induce large‐scale changes in most aspects of the biology of an organism. In this study, we explore the effect of insularity on the morphology and performance of the feeding apparatus, a system crucial for the survival of organisms. To this end, we examined the head morphology and feeding ecology of island and mainland populations of the Balkan green lizard, Lacerta trilineata. We predicted that head morphology, performance and diet composition would differ between sexes and habitats as a result of varying sexual and natural selection pressures. We employed geometric morphometrics to test for differences in head morphology, measured bite forces and analysed the diet of 154 adult lizards. Morphological analyses revealed significant differences between sexes and also between mainland and island populations. Relative to females, males had larger heads, a stronger bite and consumed harder prey than females. Moreover, island lizards differed in head shape, but not in head size, and, in the case of males, demonstrated a higher bite force. Islanders had a wider food niche breadth and included more plant material in their diet. Our findings suggest that insularity influences feeding ecology and, through selection on bite force, head morphology. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 469–484.  相似文献   

14.
Marsupial herbivores exhibit a wide variety of skull shapes and sizes to exploit different ecological niches. Several studies on teeth, dentaries, and jaw adductor muscles indicate that marsupial herbivores exhibit different specializations for grazing and browsing. No studies, however, have examined the skulls of marsupial herbivores to determine the relationship between stress and strain, and the evolution of skull shape. The relationship between skull morphology, biomechanical performance, and diet was tested by applying the finite element method to the skulls of four marsupial herbivores: the common wombat (Vombatus ursinus), koala (Phascolarctos cinereus), swamp wallaby (Wallabia bicolor), and red kangaroo (Macropus rufus). It was hypothesized that grazers, requiring stronger skulls to process tougher food, would have higher biomechanical performance than browsers. This was true when comparing the koala and wallaby (browsers) to the wombat (a grazer). The cranial model of the wombat resulted in low stress and high mechanical efficiency in relation to a robust skull capable of generating high bite forces. However, the kangaroo, also a grazer, has evolved a very different strategy to process tough food. The cranium is much more gracile and has higher stress and lower mechanical efficiency, but they adopt a different method of processing food by having a curved tooth row to concentrate force in a smaller area and molar progression to remove worn teeth from the tooth row. Therefore, the position of the bite is crucial for the structural performance of the kangaroo skull, while it is not for the wombat which process food along the entire tooth row. In accordance with previous studies, the results from this study show the mammalian skull is optimized to resist forces generated during feeding. However, other factors, including the lifestyle of the animal and its environment, also affect selection for skull morphology to meet multiple functional demands. J. Morphol. 276:1230–1243, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Notoungulates, litopterns, and astrapotheres are among the most representative mammals of the early Miocene Santacrucian Age. They comprise a diversity of biological types and sizes, from small forms, comparable to rodents, to giants with no analogues in modern faunas. Traditionally, all of them have been considered herbivores; this diversity is reflected in different morphologies of the masticatory apparatus, suggesting a variety of feeding habits. The application of biomechanics to the study of fossil mammals is a good approach to test functional hypotheses. Jaws act as a lever system, with the pivot at the temporomandibular joint, with masticatory muscles providing the input force, whereas the output force is produced by the teeth on food. The moment arms of the lines of action of the muscles can be estimated to analyze relationships between bite force and bite velocity. A morphogeometric approach inspired by Vizcaíno et al. (1998) is applied to estimate muscle moment arms in a static 3D bite model based on three-dimensional landmarks and semilandmarks on crania with mandibles in occlusion. This new 3D geometric method to evaluate jaw mechanics demonstrated its reliability when applied to a control sample of extant mammals that included carnivores, herbivores, and omnivores. Our results indicate that, except for Pachyrukhos, in no Santacrucian ungulate does the masseter muscle have greater mechanical advantage than the temporalis. Among them, notoungulates have a better configuration to develop force on the molar tooth row than litopterns. This indicates a diet richer in tough plant materials for Santacrucian notoungulates (e.g., grass or even bark) than for litopterns (e.g., dicots). This is consistent with recent ecomorphological approaches applied to this fauna. Finally, the approach proposed here proves to be useful for comparing masticatory performance and it is a powerful tool to validate ecomorphological dietary hypotheses in fossil taxa.  相似文献   

16.
Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species‐specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape‐like bite force capabilities. Am J Phys Anthropol 151:544–557, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

18.
【目的】分析云南省玉龙鼠疫疫源地野外鼠形动物寄生蚤丰盛度的影响因素。【方法】选取云南省玉龙鼠疫疫源地3个海拔区域,按4个季节进行野外捕鼠,捕获的鼠形动物用梳检法收集体表寄生蚤并在显微镜下分类鉴定。通过实际测量和实地观察相结合的方式收集潜在影响鼠形动物寄生蚤丰盛度的因素包括鼠形动物特征变量指标(如种类、年龄、性别、体长、体重)、环境和气象因子(如海拔、季节)等数据。采用EpiData 3.02软件建立数据库,在R软件下使用跨栏负二项分布回归分析鼠形动物寄生蚤丰盛度的影响因素。【结果】从捕获的884只鼠形动物中检获寄生蚤9种484头,以特新蚤指名亚种、方叶栉眼蚤、无值大锥蚤、云南栉眼蚤为主(86.16%)。回归分析显示: 2 700-3 000 m和3 000 m以上海拔鼠形动物染蚤概率较2 400-2 700 m分别增加1.27和3.72倍;湿度高于70%时,鼠形动物染蚤概率较湿度≤70%时减少41%;与齐氏姬鼠的染蚤概率相比,中华姬鼠的染蚤概率降低50%,大绒鼠的染蚤概率增加79%;体长超过104 mm的鼠形动物染蚤概率较体长≤104 mm的鼠形动物染蚤概率增加76%;气温高于15℃时,鼠形动物染蚤数量较温度≤15℃时降低67%;成年鼠形动物的染蚤数量较未成年鼠形动物的染蚤数量增加2.25倍;与春季相比,夏季的染蚤数量增加2.00倍,秋季的染蚤概率减少48%,冬季的染蚤概率和染蚤数量分别增加1.44和1.06倍。【结论】玉龙鼠疫疫源地野外鼠形动物寄生蚤以特新蚤指名亚种、方叶栉眼蚤、无值大锥蚤、云南栉眼蚤为优势蚤种。鼠形动物寄生蚤丰盛度与海拔、季节、气温、湿度等环境气象因子及鼠形动物种类、体长、年龄等鼠形动物特征变量密切相关。  相似文献   

19.
The extant distribution of sigmodontine rodents encompasses most of the New World, and the majority of the species in this subfamily inhabit South America. Nevertheless, the basal lineages of the Sigmodontinae are distributed in North and Central America, and the fossil record indicates a North American origin. This evidence has produced contentious theories concerning the evolution of these rodents. The dispute usually stems from a disagreement about the way in which sigmodontines reached South America, which was an isolated landmass during most of the Cenozoic. Fundamentally, the debate is associated with the role of Panamanian Isthmus formation and the Great American Biotic Interchange (GABI) in the diversification of the clade. An early hypothesis implies that sigmodontines arrived in South America before the complete rise of the Panamanian Isthmus, whereas a late hypothesis directly correlates the diversification of the lineage with this event. To address this question, we have sequenced nuclear and mitochondrial sequences, as well as the first Sigmodontinae mitochondrial genomes (Akodon montensis and Wiedomys cerradensis) and performed a Bayesian dating analysis. Our results showed that the most recent common ancestor of the subfamily lived at approximately 15 Ma. Although the diversification of sigmodontines was not associated with the complete rise of the Panamanian Isthmus, we cannot exclude the hypothesis that this event played a relevant role in the evolution of the lineage during the Miocene.  相似文献   

20.
The Common Chuckwalla [ Sauromalus ater (=  obesus )] is a large, sexually dimorphic lizard with a flattened head that takes refuge from predators in rock crevices. Males use their relatively large heads to bite competing males during territorial fights and to restrain females during copulation. Flattened heads with an antipredator function (i.e. seeking refuge in crevices) and enlarged heads with intrasexual competition and reproductive functions suggest possible antagonism between selective pressures on head morphology in males. To examine this hypothesis, we performed a morphometric analysis and measured the bite-force performance of 49 adult chuckwallas. Males had disproportionately wider heads than females, but did not have deeper heads. Males bit with nearly four times the force of females, consistent with the notion of sexual selection for high bite force in males. Although constrained by crevice-wedging behaviour, head depth was a good predictor of bite force in both sexes. In males, however, osteological head width also was a good predictor of bite force. These results are consistent with the hypothesis that head shape in males is under antagonistic selective pressures, which may partly explain the pattern of head shape dimorphism. The disproportionately wide head of males may reflect anatomical modifications to enhance bite force in response to sexual selection in spite of presumed constraints on head shape for crevice-wedging behaviour  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 215–222.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号