首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diapause is an adaptive dormancy strategy by which arthropods endure extended periods of adverse climatic conditions. Seasonal variation in larval diapause initiation and duration in Ostrinia furnacalis may influence adult mating generation number (voltinism) across different local environments. The degree to which voltine ecotype, geographic distance, or other ecological factors influence O. furnacalis population genetic structure remains uncertain. Genetic differentiation was estimated between voltine ecotypes collected from 8 locations. Mitochondrial haplotypes were significantly different between historically allopatric univoltine and bivoltine locations, but confounded by a strong correlation with geographic distance. In contrast, single nucleotide polymorphism (SNP) genotypes show low but significant levels of variation and a lack of influence of geographic distance between allopatric voltine locations. Regardless, 11 of 257 SNP loci were predicted to be under selection, suggesting population genetic homogenization except at loci proximal to factors putatively under selection. These findings provide evidence of haplotype divergent voltine ecotypes that may be maintained in allopatric and sympatric areas despite relatively high rates of nuclear gene flow, yet influence of voltinism on maintenance of observed haplotype divergence remains unresolved.  相似文献   

2.
Genetic adaptation and phenotypic plasticity are two ways in which organisms can adapt to local environmental conditions. We examined genetic and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen; normoxic) populations of an African cichlid fish, Pseudocrenilabrus multicolor victoriae. Larger gills and smaller brains should be advantageous when oxygen is low, and we hypothesized that the relative contribution of local genetic adaptation vs. phenotypic plasticity should be related to potential for dispersal between environments (because of gene flow’s constraint on local genetic adaptation). We conducted a laboratory‐rearing experiment, with broods from multiple populations raised under high‐oxygen and low‐oxygen conditions. We found that most of the variation in gill size was because of plasticity. However, both plastic and genetic effects on brain mass were detected, as were genetic effects on brain mass plasticity. F1 offspring from populations with the highest potential for dispersal between environments had characteristically smaller and more plastic brains. This phenotypic pattern might be adaptive in the face of gene flow, if smaller brains and increased plasticity confer higher average fitness across environment types.  相似文献   

3.
Local adaptation occurs when a population in a heterogeneous environment experiences divergent ecological selection but only if selection is stronger than the homogenizing effects of gene flow. The forest environments of Oregon vary along a physical and biotic gradient from a wet, closed‐canopy forest near the coast to a drier open‐canopy forest eastward across the Cascade Mountains. The present study explores patterns of local adaptation in Douglas squirrels (Tamiasciurus douglasii) in relation to these transitions in forest structure and ecology. We test for the presence of morphological clines in relation to gene flow and, more specifically, whether any such character clines correspond with environmental clines. We sampled animals at six locations (10 specimens each) and evaluated environmental parameters across a 240‐km west‐to‐east transect. Population structure analysis of 18 microsatellite loci indicates a single, panmictic squirrel population across the entire transect. Coalescent‐based estimates show bidirectional gene flow at similar west–east intensities between squirrels in coastal and interior forests. Of the four skull traits examined, none shows a significant clinal transition. By contrast, ventral fur colour shows a strong clinal transition, from deep‐orange in coastal forest to whitish–yellow in the interior forest. This pattern of phenotypic divergence coincides with the gradient in tree‐canopy cover. Ventral fur colour of T. douglasii exemplifies a gradation of continuous phenotypic variation maintained despite ongoing gene flow in a panmictic population. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 536–546.  相似文献   

4.
We use an individual-based numerical simulation to study the effects of phenotypic plasticity on ecological speciation. We find that adaptive plasticity evolves readily in the presence of dispersal between populations from different ecological environments. This plasticity promotes the colonization of new environments but reduces genetic divergence between them. We also find that the evolution of plasticity can either enhance or degrade the potential for divergent selection to form reproductive barriers. Of particular importance here is the timing of plasticity in relation to the timing of dispersal. If plasticity is expressed after dispersal, reproductive barriers are generally weaker because plasticity allows migrants to be better suited for their new environment. If plasticity is expressed before dispersal, reproductive barriers are either unaffected or enhanced. Among the potential reproductive barriers we considered, natural selection against migrants was the most important, primarily because it was the earliest-acting barrier. Accordingly, plasticity had a much greater effect on natural selection against migrants than on sexual selection against migrants or on natural and sexual selection against hybrids. In general, phenotypic plasticity can strongly alter the process of ecological speciation and should be considered when studying the evolution of reproductive barriers.  相似文献   

5.
Hybridization can generate novel phenotypes, and in combination with divergent selection along environmental gradients, can play a driving role in phenotypic diversification. This study examined the influence of introgressive hybridization and environmental variation on the phenotypic diversity of two pupfish species (Cyprinodon atrorus and Cyprinodon bifasciatus) endemic to the Cuatro Ciénegas basin, Mexico. These species occupy opposite environmental extremes and are comprised of multiple, intraspecifically isolated populations. However, interspecific hybridization occurs to various degrees within connecting, intermediate environments. Using geometric morphometric analysis, extensive variation of body shape was observed between and within species, and phenotypic variation was strongly correlated with environmental conditions. Furthermore, some introgressed populations exhibited unique phenotypes not found in either of the parents, and overall morphospace occupation was significantly higher in introgressed populations when compared to the parentals. Overall, we find environmental variation and transgressive segregation both appear to have been important in shaping phenotypic variation in this system.  相似文献   

6.
Dispersal and local patterns of adaptation play a major role on the ecological and evolutionary trajectory of natural populations. In this study, we employ a combination of genetic (25 microsatellite markers) and field‐based information (seven study years) to analyse the impact of immigration and local patterns of adaptation in two nearby (< 7 km) blue tit (Cyanistes caeruleus) populations. We used genetic assignment analyses to identify immigrant individuals and found that dispersal rate is female‐biased (72%). Data on lifetime reproductive success indicated that immigrant females produced fewer local recruits than their philopatric counterparts whereas immigrant males recruited more offspring than those that remained in their natal location. In spite of the considerably higher immigration rates of females, our results indicate that, in absolute terms, their demographic and genetic impact in the receiving populations is lower than that in immigrant males. Immigrants often brought novel alleles into the studied populations and a high proportion of them were transmitted to their recruits, indicating that the genetic impact of immigrants is not ephemeral. Although only a few kilometres apart, the two study populations were genetically differentiated and showed strong divergence in different phenotypic and life‐history traits. An almost absent inter‐population dispersal, together with the fact that both populations receive immigrants from different source populations, is probably the main cause of the observed pattern of genetic differentiation. However, phenotypic differentiation (PST) for all the studied traits greatly exceeded neutral genetic differentiation (FST), indicating that divergent natural selection is the prevailing factor determining the evolutionary trajectory of these populations. Our study highlights the importance of integrating individual‐ and population‐based approaches to obtain a comprehensive view about the role of dispersal and natural selection on structuring the genotypic and phenotypic characteristics of natural populations.  相似文献   

7.
Geographic trait variations are often caused by locally different selection regimes. As a steep environmental cline along altitude strongly influences adaptive traits, mountain ecosystems are ideal for exploring adaptive differentiation over short distances. We investigated altitudinal floral size variation of Campanula punctata var. hondoensis in 12 populations in three mountain regions of central Japan to test whether the altitudinal floral size variation was correlated with the size of the local bumblebee pollinator and to assess whether floral size was selected for by pollinator size. We found apparent geographic variations in pollinator assemblages along altitude, which consequently produced a geographic change in pollinator size. Similarly, we found altitudinal changes in floral size, which proved to be correlated with the local pollinator size, but not with altitude itself. Furthermore, pollen removal from flower styles onto bees (plant's male fitness) was strongly influenced by the size match between flower style length and pollinator mouthpart length. These results strongly suggest that C. punctata floral size is under pollinator‐mediated selection and that a geographic mosaic of locally adapted C. punctata exists at fine spatial scale.  相似文献   

8.
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

9.
In sexually polymorphic plant species the extent of gender divergence in floral morphology and phenology may be influenced by gender‐specific selection patterns imposed by pollinators, which may change geographically. Distribution margins are areas where changes in the pollinator fauna, and thus variation in gender divergence of floral traits, are expected. We tested for pollination‐driven geographic variation in the gender divergence in floral and phenological traits in the gynodioecious shrub Daphne laureola, in core and marginal areas differing in the identity of the main pollinator. Pollinators selected for longer corolla tubes in hermaphrodite individuals only in core populations, which in turn recorded higher fruit set. Consistent with these phenotypic selection patterns, gender divergence in flower corolla length was higher in core populations. Moreover, pollinators selected towards delayed flowering on hermaphrodite individuals only in marginal populations, where the two sexes differed more in flowering time. Our results support that a shift in main pollinators is able to contribute to geographic variation in the gender divergence of sexually polymorphic plant species.  相似文献   

10.
We study invasion and survival of weakly beneficial mutations arising in linkage to an established migration–selection polymorphism. Our focus is on a continent–island model of migration, with selection at two biallelic loci for adaptation to the island environment. Combining branching and diffusion processes, we provide the theoretical basis for understanding the evolution of islands of divergence, the genetic architecture of locally adaptive traits, and the importance of so-called “divergence hitchhiking” relative to other mechanisms, such as “genomic hitchhiking”, chromosomal inversions, or translocations. We derive approximations to the invasion probability and the extinction time of a de novo mutation. Interestingly, the invasion probability is maximized at a nonzero recombination rate if the focal mutation is sufficiently beneficial. If a proportion of migrants carries a beneficial background allele, the mutation is less likely to become established. Linked selection may increase the survival time by several orders of magnitude. By altering the timescale of stochastic loss, it can therefore affect the dynamics at the focal site to an extent that is of evolutionary importance, especially in small populations. We derive an effective migration rate experienced by the weakly beneficial mutation, which accounts for the reduction in gene flow imposed by linked selection. Using the concept of the effective migration rate, we also quantify the long-term effects on neutral variation embedded in a genome with arbitrarily many sites under selection. Patterns of neutral diversity change qualitatively and quantitatively as the position of the neutral locus is moved along the chromosome. This will be useful for population-genomic inference. Our results strengthen the emerging view that physically linked selection is biologically relevant if linkage is tight or if selection at the background locus is strong.  相似文献   

11.
Studies of the adaptive significance of variation among conspecific populations often focus on a single ecological factor. However, habitats rarely differ in only a single ecological factor, creating a challenge for identifying the relative importance of the various ecological factors that might be maintaining local adaptation. Here we investigate the ecological factors associated with male body shape variation among nine populations of the poeciliid fish, Heterandria formosa, from three distinct habitats and combine those results with a laboratory study of three of those populations to assess the contributions of genetic and environmental influences to shape variation. Field‐collected animals varied principally in three ways: the orientation of the gonopodium, the intromittent organ; the degree of body depth and streamlining; and the shape of the tail musculature. Fish collected in the spring season were larger and had a more anteriorly positioned gonopodium than fish collected in autumn. Fish collected from lotic springs were larger and more streamlined than those collected from lentic ponds or tidal marshes. Some of the variation in male shape among populations within habitats was associated with population‐level variation in species richness, adult density, vegetative cover, predation risk, and female standard length. Population‐level differences among males in body size, position of the gonopodium, and shape of the tail musculature were maintained among males reared in a common environment. In contrast, population variation in the degree of streamlining was eliminated when males were reared in a common environment. These results illustrate the complicated construction of multivariate phenotypic variation and suggest that different agents of selection have acted on different components of shape.  相似文献   

12.
Identifying traits and agents of selection involved in local adaptation is important for understanding population divergence. In southern Sweden, the moth‐pollinated orchid Platanthera bifolia occurs as a woodland and a grassland ecotype that differ in dominating pollinators. The woodland ecotype is taller (expected to influence pollinator attraction) and produces flowers with longer spurs (expected to influence efficiency of pollen transfer) compared to the grassland ecotype. We examined whether plant height and spur length affect pollination and reproductive success in a woodland population, and whether effects are non‐additive, as expected for traits influencing two multiplicative components of pollen transfer. We reduced plant height and spur length to match trait values observed in the grassland ecotype and determined the effects on pollen removal, pollen receipt, and fruit production. In addition, to examine the effects of naturally occurring variation, we quantified pollinator‐mediated selection through pollen removal and seed production in the same population. Reductions of plant height and spur length decreased pollen removal, number of flowers receiving pollen, mean pollen receipt per pollinated flower, and fruit production per plant, but no significant interaction effect was detected. The selection analysis demonstrated pollinator‐mediated selection for taller plants via female fitness. However, there was no current selection mediated by pollinators on spur length, and pollen removal was not related to plant height or spur length. The results show that, although both traits are important for pollination success and female fitness in the woodland habitat, only plant height was sufficiently variable in the study population for current pollinator‐mediated selection to be detected. More generally, the results illustrate how a combination of experimental approaches can be used to identify both traits and agents of selection.  相似文献   

13.
Discrete color polymorphisms represent a fascinating aspect of intraspecific diversity. Color morph ratios often vary clinally, but in some cases, there are no marked clines and mixes of different morphs occur at appreciable frequencies in most populations. This poses the questions of how polymorphisms are maintained. We here study the spatial and temporal distribution of a very conspicuous color polymorphism in the club‐legged grasshopper Gomphocerus sibiricus. The species occurs in a green and a nongreen (predominately brown) morph, a green–brown polymorphism that is common among Orthopteran insects. We sampled color morph ratios at 42 sites across the alpine range of the species and related color morph ratios to local habitat parameters and climatic conditions. Green morphs occurred in both sexes, and their morph ratios were highly correlated among sites, suggesting shared control of the polymorphism in females and males. We found that in at least 40 of 42 sites green and brown morphs co‐occurred with proportions of green ranging from 0% to 70% with significant spatial heterogeneity. The proportion of green individuals tended to increase with decreasing summer and winter precipitations. Nongreen individuals can be further distinguished into brown and pied individuals, and again, this polymorphism is shared with other grasshopper species. We found pied individuals at all sites with proportions ranging from 3% to 75%, with slight, but significant variation between years. Pied morphs show a clinal increase in frequency from east to west and decreased with altitude and lower temperatures and were more common on grazed sites. The results suggest that both small‐scale and large‐scale spatial heterogeneity affects color morph ratios. The almost universal co‐occurrence of all three color morphs argues against strong effects of genetic drift. Instead, the data suggest that small‐scale migration–selection balance and/or local balancing selection maintain populations polymorphic.  相似文献   

14.
Phenotypic differences may have genetic and plastic components. Here, we investigated the contributions of both for differences in body shape in two species of Lake Malawi cichlids using wild‐caught specimens and a common garden experiment. We further hybridized the two species to investigate the mode of gene action influencing body shape differences and to examine the potential for transgressive segregation. We found that body shape differences between the two species observed in the field are maintained after more than 10 generations in a standardized environment. Nonetheless, both species experienced similar changes in the laboratory environment. Our hybrid cross experiment confirmed that substantial variation in body shape appears to be genetically determined. The data further suggest that the underlying mode of gene action is complex and cannot be explained by simple additive or additive‐dominance models. Transgressive phenotypes were found in the hybrid generations, as hybrids occupied significantly more morphospace than both parentals combined. Further, the body shapes of transgressive individuals resemble the body shapes observed in other Lake Malawi rock‐dwelling genera. Our findings indicate that body shape can respond to selection immediately, through plasticity, and over longer timescales through adaptation. In addition, our results suggest that hybridization may have played an important role in the diversification of Lake Malawi cichlids through creating new phenotypic variation.  相似文献   

15.
In spatially structured populations, host–parasite coevolutionary potential depends on the distribution of genetic variation within and among populations. Inoculation experiments using the plant, Silene latifolia, and its fungal pathogen, Microbotryum violaceum, revealed little overall differentiation in infectivity/resistance, latency or spore production among host or pathogen populations. Within populations, fungal strains had similar means, but varied in performance across plant populations. Variation in resistance among seed families indicates the potential for parasite‐mediated selection, whereas there was little evidence for local pathogen genotype × plant genotype interactions assumed by most theoretical coevolution models. Lower spore production on sympatric than allopatric hosts confirmed local fungal maladaptation already observed for infectivity. Correlations between infectivity and latency or spore production suggest a common mechanism for variation in these traits. Our results suggest low variation available to this pathogen for tracking its coevolving host. This may be caused by random drift, breeding system or migration characteristic of metapopulation dynamics.  相似文献   

16.
The distribution of phenotypes in space will be a compromise between adaptive plasticity and local adaptation increasing the fit of phenotypes to local conditions and gene flow reducing that fit. Theoretical models on the evolution of quantitative characters on spatially explicit landscapes have only considered scenarios where optimum trait values change as deterministic functions of space. Here, these models are extended to include stochastic spatially autocorrelated aspects to the environment, and consequently the optimal phenotype. Under these conditions, the regression of phenotype on the environmental variable becomes steeper as the spatial scale on which populations are sampled becomes larger. Under certain deterministic models – such as linear clines – the regression is constant. The way in which the regression changes with spatial scale is informative about the degree of phenotypic plasticity, the relative scale of effective gene flow and the environmental dependency of selection. Connections to temporal models are discussed.  相似文献   

17.
Organisms commonly experience significant spatiotemporal variation in their environments. In response to such heterogeneity, different mechanisms may act that enhance ecological performance locally. However, depending on the nature of the mechanism involved, the consequences for populations may differ greatly. Building on a previous model that investigated the conditions under which different adaptive mechanisms (co)evolve, this study compares the ecological and evolutionary population consequences of three very different responses to environmental heterogeneity: matching habitat choice (directed gene flow), adaptive plasticity (associated with random gene flow), and divergent natural selection. Using individual‐based simulations, we show that matching habitat choice can have a greater adaptive potential than plasticity or natural selection: it allows for local adaptation while protecting genetic polymorphism despite global mating or strong environmental changes. Our simulations further reveal that increasing environmental fluctuations and unpredictability generally favor the emergence of specialist genotypes but that matching habitat choice is better at preventing local maladaptation by individuals. This confirms that matching habitat choice can speed up the genetic divergence among populations, cause indirect assortative mating via spatial clustering, and hence even facilitate sympatric speciation. This study highlights the potential importance of directed dispersal in local adaptation and speciation, stresses the difficulty of deriving its operation from nonexperimental observational data alone, and helps define a set of ecological conditions which should favor its emergence and subsequent detection in nature.  相似文献   

18.
Models of speciation‐with‐gene‐flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.  相似文献   

19.
The Dartford Warbler Sylvia undata has recently expanded its range northwards and upwards in the UK, consistent with the hypothesis that this cold‐sensitive species has responded to a warming climate. We interrogated distribution data, collected during four national surveys of this species between 1974 and 2006, to assess whether this large‐scale range expansion has been accompanied by finer‐scale changes in topographic characteristics of breeding locations. Within sites occupied in successive surveys, there was some evidence of limited altitudinal expansion between surveys. Within wider landscapes occupied in successive surveys, the preceding winter climate tended to be harsher at newly colonized sites than at sites that had already been occupied in the previous survey, while territories in newly colonized sites also tended to be on steeper slopes, especially if at higher altitude, and (in 1994 only) to be more south‐facing. Territories in sites that had already been occupied in the previous survey tended to be lower altitude, less steep and more north‐facing than territories in newly colonized landscapes. In 2006 only, the winter climate was significantly milder in newly colonized landscapes than in already occupied sites. The combined effects of a changing climate and topography may have influenced the pattern of in‐filling in the existing range, while colonization of distant areas, especially more latterly, may have been facilitated by a combination of increased dispersal pressure from the existing range and warming of climate which made higher altitude habitat in the new areas more suitable for occupancy. Careful consideration needs to be given to the importance of fine‐scale topographical variation in determining species’ responses to climate change in order to underpin robust adaptation strategies.  相似文献   

20.
Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号