首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.  相似文献   

2.
Recent studies have demonstrated that alleles at single nucleotide polymorphisms (SNPs) rs2187668 and rs4664308 within genes HLA-DQA1 and PLA2R1, respectively, had a significant impact on the susceptibility to idiopathic membranous nephropathy (IMN). Analysis of the two genomic loci could identify alleles for individuals at risk for IMN. Conventional methods for genotyping are labor intensive, expensive or time consuming. High resolution melting (HRM) is a new technique for genotyping and has the advantages of simplicity, speed, high sensitivity and low cost. Here, we describe genotyping of SNPs rs2187668 and rs4664308 using HRM. In this study, we identified polymorphisms of rs2187668 and rs4664308 in 480 healthy unrelated Chinese volunteers of two ethnic groups from three different geographical areas in China. The two genomic loci were genotyped by HRM using a saturating fluorescent dye SYTO® 9 on 7900 HT and RG 6000 instruments, and were further confirmed by direct DNA sequencing. Three different SNP genotypes were sufficiently distinguished by HRM with mean sensitivity of 98.8% and mean error rate of 1.9%. In addition, the allele frequencies varied greatly based on ethnic or geographic origins. In conclusion, HRM is a rapid, cost efficient, sensitive, suitable technique for genotyping, and simple enough to be readily implemented in a diagnostic laboratory. We believe this will be a valuable technique for determining the genotype of rs2187668 and rs4664308 and for assessing individual susceptibility to IMN.  相似文献   

3.
Not all single-nucleotide polymorphisms (SNPs) can be determined using high-resolution melting (HRM) of small amplicons, especially class 3 and 4 SNPs. This is due mainly to the small shift in the melting temperature (Tm) between two types of homozygote. Choosing rs1869458 (a class 4 SNP) as a sample, we developed a modified small amplicon HRM assay. An allele-specific extension (ASE) primer, which ended at an SNP site and matched only one of the alleles, was added to the reaction as well as additional thermal steps for ASE. Following asymmetric polymerase chain reaction and melting curve analysis, heterozygotes were easily identified. Two types of homozygote were also distinguishable, indicating that extension primers 11 to 13 bases in length worked efficiently in an allele-specific way. Modification of the limiting amplification primer with locked nucleic acid increased the Tm difference between extension and amplification peaks and facilitated subsequent genotyping. In addition, 194 human genomic DNA samples were genotyped with the developed assay and by direct sequencing, with the different methods providing identical genotyping results. In conclusion, ASE-HRM is a simple, inexpensive, closed-tube genotyping method that can be used to examine all types of SNP.  相似文献   

4.
High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G?A, G?T, C?A, C?T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 "melt types" (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs.  相似文献   

5.
High resolution melting analysis of almond SNPs derived from ESTs   总被引:4,自引:1,他引:3  
High resolution melting curve (HRM) is a recent advance for the detection of SNPs. The technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between samples. It has been applied to the analysis and scan of mutations in the genes causing human diseases. In plant species, the use of this approach is limited. We applied HRM analysis to almond SNP discovery and genotyping based on the predicted SNP information derived from the almond and peach EST database. Putative SNPs were screened from almond and peach EST contigs by HRM analysis against 25 almond cultivars. All 4 classes of SNPs, INDELs and microsatellites were discriminated, and the HRM profiles of 17 amplicons were established. The PCR amplicons containing single, double and multiple SNPs produced distinctive HRM profiles. Additionally, different genotypes of INDEL and microsatellite variations were also characterised by HRM analysis. By sequencing the PCR products, 100 SNPs were validated/revealed in the HRM amplicons and their flanking regions. The results showed that the average frequency of SNPs was 1:114 bp in the genic regions, and transition to transversion ratio was 1.16:1. Rare allele frequencies of the SNPs varied from 0.02 to 0.5, and the polymorphic information contents of the SNPs were from 0.04 to 0.53 at an average of 0.31. HRM has been demonstrated to be a fast, low cost, and efficient approach for SNP discovery and genotyping, in particular, for species without much genomic information such as almond.  相似文献   

6.
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic polymorphism in plant genomes. SNP markers are valuable tools for genetic analysis of complex traits of agronomic importance, linkage and association mapping, genome-wide selection, map-based cloning, and marker-assisted selection. Current challenges for SNP genotyping in polyploid outcrossing species include multiple alleles per loci and lack of high-throughput methods suitable for variant detection. In this study, we report on a high-resolution melting (HRM) analysis system for SNP genotyping and mapping in outcrossing tetraploid genotypes. The sensitivity and utility of this technology is demonstrated by identification of the parental genotypes and segregating progeny in six alfalfa populations based on unique melting curve profiles due to differences in allelic composition at one or multiple loci. HRM using a 384-well format is a fast, consistent, and efficient approach for SNP discovery and genotyping, useful in polyploid species with uncharacterized genomes. Possible applications of this method include variation discovery, analysis of candidate genes, genotyping for comparative and association mapping, and integration of genome-wide selection in breeding programs.  相似文献   

7.
Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.  相似文献   

8.
Li F  Niu B  Huang Y  Meng Z 《PloS one》2012,7(1):e29664
Development of an ideal marker system facilitates a better understanding of the genetic diversity in lepidopteran non-model organisms, which have abundant species, but relatively limited genomic resources. Single nucleotide polymorphisms (SNPs) discovered within single-copy genes have proved to be desired markers, but SNP genotyping by current techniques remain laborious and expensive. High resolution melting (HRM) curve analysis represents a simple, rapid and inexpensive genotyping method that is primarily confined to clinical and diagnostic studies. In this study, we evaluated the potential of HRM analysis for SNP genotyping in the lepidopteran non-model species Ostrinia furnacalis (Crambidae). Small amplicon and unlabeled probe assays were developed for the SNPs, which were identified in 30 females of O. furnacalis from 3 different populations by our direct sequencing. Both assays were then applied to genotype 90 unknown female DNA by prior mixing with known wild-type DNA. The genotyping results were compared with those that were obtained using bi-directional sequencing analysis. Our results demonstrated the efficiency and reliability of the HRM assays. HRM has the potential to provide simple, cost-effective genotyping assays and facilitates genotyping studies in any non-model lepidopteran species of interest.  相似文献   

9.
The general approach to discovering single nucleotide polymorphisms (SNPs) requires locus-specific PCR amplification. To enhance the efficiency of SNP discovery in soybean, we used in silico analysis prior to re-sequencing as it is both rapid and inexpensive. In silico analysis was performed to detect putative SNPs in expressed sequence tag (EST) contigs assembled using publicly available ESTs from 18 different soybean genotypes. SNP validation by direct sequencing of six soybean cultivars and a wild soybean genotype was performed with PCR primers designed from EST contigs aligned with at least 5 out of 18 soybean genotypes. The efficiency of SNP discovery among the confirmation genotypes was 81.2%. Furthermore, the efficiency of SNP discovery between Pureunkong and Jinpumkong 2 genotypes was 47.4%, a great improvement on our previous finding based on direct sequencing (22.3%). Using SNPs between Pureunkong and Jinpumkong 2 in EST contigs, which were linked to target traits, we were able to genotype 90 recombinant inbred lines by high-resolution melting (HRM) analysis. These SNPs were mapped onto the expected locations near quantitative trait loci for water-logging tolerance and seed pectin concentration. Thus, our protocol for HRM analysis can be applied successfully not only to genetic diversity studies, but also to marker-assisted selection (MAS). Our study suggests that a combination of in silico analysis and HRM can reduce the cost and labor involved in developing SNP markers and genotyping SNPs. The markers developed in this study can also easily be applied to MAS if the markers are associated with the target traits.  相似文献   

10.
We present a PCR method for identification of single nucleotide polymorphisms (SNPs), using allele-specific primers designed for selective amplification of each allele. Matching the SNP at the 3' end of the forward or reverse primer, and additionally incorporating a 3' mismatch to prevent amplification of the incorrect allele, results in selectivity of the allele-specific primers. DNA melting analysis with fluorescent SYBR Green affords detection of the PCR products. By incorporating a GC-rich sequence into one of the two allele-specific primers to increase the melting temperature, both alleles can be measured simultaneously at their respective melting temperatures. Applying the DNA melting analysis to SNPs in ApoE and ABCA1 yielded results identical to those obtained with other genotyping methods. This provides a cost-effective, high-throughput method for amplification and scoring of SNPs.  相似文献   

11.
Petersen I  Eastman R  Lanzer M 《FEBS letters》2011,585(11):1551-1562
Resistance to antimalarial drugs has often threatened malaria elimination efforts and historically has led to the short-term resurgence of malaria incidences and deaths. With concentrated malaria eradication efforts currently underway, monitoring drug resistance in clinical settings complemented by in vitro drug susceptibility assays and analysis of resistance markers, becomes critical to the implementation of an effective antimalarial drug policy. Understanding of the factors, which lead to the development and spread of drug resistance, is necessary to design optimal prevention and treatment strategies. This review attempts to summarize the unique factors presented by malarial parasites that lead to the emergence and spread of drug resistance, and gives an overview of known resistance mechanisms to currently used antimalarial drugs.  相似文献   

12.
High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved in vernalization response successfully discriminated genotypes in absence of allelic sequence information, and allowed to determine allele segregation in VrnA. Here we introduce the concept of “blind” mapping based on HRM as a powerful, fast and cheap method to map any DNA sequence polymorphisms without prior knowledge of allelic sequences in the key grassland species perennial ryegrass (Lolium perenne L.).  相似文献   

13.
The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum.  相似文献   

14.
Here we report a single nucleotide polymorphism (SNP) based genotyping method for Klebsiella pneumoniae utilising high-resolution melting (HRM) analysis of fragments within the multilocus sequence typing (MLST) loci. The approach is termed mini-MLST or Minim typing and it has previously been applied to Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecium. Six SNPs were derived from concatenated MLST sequences on the basis of maximisation of the Simpsons Index of Diversity (D). DNA fragments incorporating these SNPs and predicted to be suitable for HRM analysis were designed. Using the assumption that HRM alleles are defined by G+C content, Minim typing using six fragments was predicted to provide a D = 0.979 against known STs. The method was tested against 202 K. pneumoniae using a blinded approach in which the MLST analyses were performed after the HRM analyses. The HRM-based alleles were indeed in accordance with G+C content, and the Minim typing identified known STs and flagged new STs. The tonB MLST locus was determined to be very diverse, and the two Minim fragments located herein contribute greatly to the resolving power. However these fragments are refractory to amplification in a minority of isolates. Therefore, we assessed the performance of two additional formats: one using only the four fragments located outside the tonB gene (D = 0.929), and the other using HRM data from these four fragments in conjunction with sequencing of the tonB MLST fragment (D = 0.995). The HRM assays were developed on the Rotorgene 6000, and the method was shown to also be robust on the LightCycler 480, allowing a 384-well high through-put format. The assay provides rapid, robust and low-cost typing with fully portable results that can directly be related to current MLST data. Minim typing in combination with molecular screening for antibiotic resistance markers can be a powerful surveillance tool kit.  相似文献   

15.
Although Sequence-Characterized Amplified Region (SCAR) markers linked to the potato H1 locus, which confers resistance to pathotypes Ro1 and Ro4 of the potato cyst nematode (PCN) Globodera rostochiensis, have been reported, robust markers that enable estimation of allele dosage would improve the quality of information obtained from genotyping parental accessions (cultivars/breeding lines) and progeny populations within breeding programmes. With this in mind, we have developed single nucleotide polymorphism (SNP)-based molecular markers flanking the H1 resistance gene, using genomic re-sequence data from five elite tetraploid accessions. The published TG689 and 57R primer sequences were used in a Basic Local Alignment Search Tool (BLAST) examination of the reference potato genome, and SNPs within the vicinity of these primer regions were identified and targeted for designing probe-based High Resolution Melting (HRM) SNP assays. Evaluation of the subsequently developed HRM markers, TG689_1P and 57R_1P, against the publicly available SCAR markers, TG689 and 57R, indicated that the HRM markers enabled more reliable marker-trait association than the SCARs. Additionally, allelic dosage estimates for the H1 locus were also derived using the TG689_1P marker, providing a tool to optimise parental and progeny selections in PCN resistance breeding.  相似文献   

16.
Mu J  Seydel KB  Bates A  Su XZ 《Current Genomics》2010,11(4):279-286
With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleotide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some recent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput genotyping methods for genome-wide association studies (GWAS).  相似文献   

17.
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.  相似文献   

18.
Liu SM  Xu FX  Shen F  Xie Y 《Gene》2012,498(2):276-279
The APOA5 -1131 T/C polymorphism (rs662799) exhibits a very strong association with elevated TG levels in different racial groups. High resolution melting (HRM) analysis with the use of unlabeled probes has shown to be a convenient and reliable tool to genotyping, but not yet been used for detecting rs662799 polymorphism. We applied the unlabeled probe HRM analysis and direct DNA sequencing to assay the -1131T>C SNP in 130 cases DNA samples blindly. This HRM analysis can be completed in <3 min for each sample. The two melting peaks were displayed at 66.1±0.4°C for CC homozygote and 68.7±0.2°C for TT homozygote; TC heterozygote showed the both melting peaks. The genotyping results by HRM method were completely concordant with direct DNA sequencing. The distribution of CC, TC, and TT genotypes for the -1131T>C SNP was 9.2, 49.2, and 41.5%, respectively. This assay was sensitive enough to detect C allele down to 20% and 10% for T allele. The limit of detection for C and T allele was 6.2 and 2.5 ng/μL DNA, respectively. The developed unlabeled probe HRM method provides an alternative mean to detect ApoA5 -1131T>C SNP rapidly and accurately.  相似文献   

19.
Previous studies have demonstrated that integrins are involved in the aetiology of asthma. Several single-nucleotide polymorphisms (SNPs) in the integrin β3 (ITGB3) gene are significantly associated with asthma in Western populations. Given the important roles of environmental exposures in the development of asthma, we evaluated the associations between six SNPs in ITGB3 and asthma in Chinese Han children. A total of 321 unrelated Chinese children with asthma and 315 healthy children were recruited for the study. SNP genotyping was performed by high-resolution melting analysis (HRM). The selected SNPs were well genotyped by HRM, and SNP rs3809865 in the 3′ untranslated region (3′UTR) of ITGB3 was found to be strongly associated with asthma (adjusted p = 0.004). The minor allele of rs3809865 showed a protective effect against asthma (OR: 0.59; 95% CI: 0.43–0.8). The seed regions of two miRNAs (hsa-mir-124 and hsa-mir-506) were predicted to bind to the sequence containing rs3809865 by TargetScan and PITA. Luciferase reporter assays demonstrated that the T allele of rs3809865 was more efficiently targeted by hsa-mir-124 than was the A allele, which suggested that rs3809865 could affect the binding of hsa-mir-124 to ITGB3. Furthermore, the transfection of A549 cells with hsa-mir-124 resulted in the downregulation of ITGB3 expression. Our results revealed that rs3809865 was significantly associated with asthma due to its effect on the binding of hsa-mir-124 to ITGB3.  相似文献   

20.
The development of next generation sequencing (NGS) and high throughput genotyping are important techniques for the QTL mapping and genetic analysis of different crops. High-resolution melting (HRM) is an emerging technology used for detecting single-nucleotide polymorphisms (SNPs) in various species. However, its use is still limited in maize. The HRM analysis was integrated with SNPs to identify three types of populations (NIL population, RIL population and natural population), and the useful tags were screened. The patterns of temperature-shifted melting curves were investigated from the HRM analysis, and compared these with the kit. Among all 48 pairs of primers, 10 pairs of them were selected: six pairs of primers for the NIL population, three pairs of primers for the RIL population, and one pair of primer for the natural population. The marker for the natural population was developed with a matching rate of 80% for the plant height trait, based on the data of the phenotypic characteristics measured in the field. This study provides an effective method for maize genotyping in the classification of maize germplasm resources, which can be applied to other plants for high-throughput SNP genotyping or further mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号