首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Maternal environmental effects reflect the contribution of the maternal environment to the offspring phenotype. Maternal effects are prevalent in plants and animals and may undergo adaptive evolution and affect patterns of natural selection within and across generations. Here, we raise two generations of a rapeseed (Brassica rapa) population derived from a cross between a rapid-cycling and an oilseed genotype in competitive and noncompetitive settings. Maternal environment had little effect on average offspring phenotypes. Maternal genotypes, however, differed in the sensitivity of almost all offspring phenotypes to the maternal environment, demonstrating genetic variation in maternal effects for traits expressed throughout ontogeny. Maternal environment did not significantly affect progeny seed production, and maternal genotypes were not variable for this trait, indicating no evidence for direct maternal effects on offspring fitness. Maternal environment influenced natural selection in the progeny generation; disruptive selection acted on seed mass among seeds matured in the noncompetitive maternal environment versus no significant selection on this trait for seeds matured in the competitive maternal environment. Although maternal effects did not directly increase fitness, they did affect evolutionary potential and selection in the progeny generation. These results suggest that diverse phenotypes of both wild and cultivated B. rapa genotypes will depend on the maternal environment in which the seeds are matured.  相似文献   

2.
Maternal and environmental factors are important sources of phenotypic variation because both factors influence offspring traits in ways that impact offspring and maternal fitness. The present study explored the effects of maternal factors (maternal body size, egg size, yolk‐steroid allocation, and oviposition‐site choice) and seasonally‐variable environmental factors on offspring phenotypes and sex ratios in a multi‐clutching lizard with environmental sex determination (Amphibolurus muricatus). Maternal identity had strong effects on offspring morphology, but the nature of maternal effects differed among successive clutches produced by females throughout the reproductive season (i.e. maternal identity by environment interactions). The among‐female and among‐clutch variation in offspring traits (including sex ratios) was not mediated through maternal body size, egg size, or variation in yolk steroid hormones. This lack of nongenetic maternal effects suggests that phenotypic variation may be generated by gene by environment interactions. These results demonstrate a significant genetic component to variation in offspring phenotypes, including sex ratios, even in species with environmental sex determination. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 256–266.  相似文献   

3.
Although mothers influence the traits of their offspring in many ways beyond the transmission of genes, it remains unclear how important such ‘maternal effects’ are to phenotypic differences among individuals. Synthesizing estimates derived from detailed pedigrees, we evaluated the amount of phenotypic variation determined by maternal effects in animal populations. Maternal effects account for half as much phenotypic variation within populations as do additive genetic effects. Maternal effects most greatly affect morphology and phenology but, surprisingly, are not stronger in species with prolonged maternal care than in species without. While maternal effects influence juvenile traits more than adult traits on average, they do not decline across ontogeny for behaviour or physiology, and they do not weaken across the life cycle in species without maternal care. These findings underscore maternal effects as an important source of phenotypic variation and emphasise their potential to affect many ecological and evolutionary processes.  相似文献   

4.
The long‐term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther‐smut fungus Microbotryum lychnidis‐dioicae, isolated from field sites varying over 700‐fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis‐dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther‐smut disease prevalence on Silene latifolia plants caused by M. lychnidis‐dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non‐ or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.  相似文献   

5.
Rust fungi are obligate parasites, of plants, with complex and in many cases poorly known life cycles which may include host alteration and up to five spore types with haploid, diploid, and dikaryotic nuclear stages. This study supports that Thekopasora areolata, the causal agent of cherry‐spruce rust in Norway spruce, is a macrocyclic heteroecious fungus with all five spore stages which uses two host plants Prunus padus and Picea abies to complete its life cycle. High genotypic diversity without population structure was found, which suggests predominantly sexual reproduction, random mating and a high gene flow within and between the populations in Fennoscandia. There was no evidence for an autoecious life cycle resulting from aeciospore infection of pistillate cones that would explain the previously reported rust epidemics without the alternate host. However, within cones and scales identical multilocus genotypes were repeatedly sampled which can be explained by vegetative growth of the fertilized mycelia or repeated mating of mycelium by spermatia of the same genotype. The high genotypic diversity within cones and haplotype inference show that each pistillate cone is infected by several basidiospores. This study provides genetic evidence for high gene flow, sexual reproduction, and multiple infections of Norway spruce cone by the rust fungus T. areolata which expands the general understanding of the biology of rust fungi.  相似文献   

6.
The nature of variation in morphological characters in spores of arbuscular endomycorrhizal fungi (Order Glomales, Class Zygomycetes) has received little attention, despite the importance of these characters in modern taxonomy of the order. We tested the hypothesis that genetic variation exists in spore size and color (presumably important taxonomic characters) within a single isolate of the glomalean fungus Glomus clarum. Phenotypic variation in size and color of spores was determined from a pot culture population (designated P). A 10% selection pressure was imposed on replicate pot cultures of the first progeny culture generation (G1) by selecting the smallest, largest, yellowest, and whitest spores from the P generation and inoculating Sorghum bicolor plants. The experiment was repeated for another generation (G2), but with a 5% selection pressure. In both the G1 and G2 generations, significant differences in spore size and color were observed among the various treatments, indicating substantial genetic variation in these characters. Despite efforts to keep the physical environment constant across generations, we observed variation in the overall means of spore size and color among the generations (regardless of treatment), indicating a strong nongenetic influence on character expression. This study provides empirical evidence that will help delimit species boundaries among isolates of Glomus clarum and similar morphospecies. It also demonstrates a promising method to help elucidate the nature of character diversity in obligately asexual fungi.  相似文献   

7.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

8.
Charles W. Fox 《Oecologia》1993,96(1):139-146
Maternal age influences offspring quality of many species of insects. This observed maternal age influence on offspring performance may be mediated through maternal age effects on egg size, which in turn may be directly influenced by the female's nutritional state. Thus, behaviors that influence a female's nutritional status will indirectly influence egg size, and possibly offspring life histories. Because males provide nutrients to females in their ejaculate, female mating frequency is one behavior which may influence her nutritional status, and thus the size of her eggs and the performance of her offspring. In this paper, I first quantify the influences of maternal age on egg size and offspring performance of the bruchid beetle, Callosobruchus maculatus. I then examine whether nutrients transferred during copulation reduce the magnitude of maternal age effects on egg size and larval performance when mothers are nutrient-stressed. Egg size and egg hatchability decreased, and development time increased, with increasing maternal age. Multiple mating and adult feeding by females both resulted in increased egg size. This increase in egg size of females mated multiply did not translate into reduced development time or increased body size and egg hatchability, but did correlate with improved survivorship of offspring produced by old mothers. Thus, it appears that because the influence of mating frequency on egg size is small relative to the influence of maternal age, the influence of nutrients derived from multiple mating on offspring life history is almost undetectable (detected only as a small influence on survivorship). For C. maculatus, female multiple mating has been demonstrated to increase adult female survivorship (Fox 1993a), egg production (Credland and Wright 1989; Fox 1993a), egg size, and larval survivorship, but, contrary to the suggestion of Wasserman and Asami (1985), multiple mating had no detectable influence on offspring development time or body size.  相似文献   

9.
Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.  相似文献   

10.
金针菇担孢子核相及遗传属性的研究   总被引:1,自引:0,他引:1  
以3个不同的金针菇菌株为材料,研究了其担孢子的核相及遗传属性。荧光染色观察显示,担孢子核相以双核为主,双核孢子、单核孢子和无核孢子分别占80.2%、7.5%和12.3%。源于单孢分离物的菌丝为有隔膜、无锁状联合的多核菌丝。在交配试验中,源于不同菌株单孢分离物的菌丝原生质体的配对形成具锁状联合的菌落,而源于同一单孢分离物的菌丝原生质体的配对则形成无锁状联合的菌落,暗示担孢子中的两个核具有相同的交配型。RAPD分析显示,源于同一单孢分离物的菌丝原生质体为10个随机引物所扩增的图谱彼此完全相同,印证了担孢子中的双核是同质的。此外,观察表明,一个担子上着生有4个担孢子。因此,金针菇是一种具4个含同质双核担孢子的四极性蕈菌。  相似文献   

11.
The significance of sexual selection, the component of natural selection associated with variation in mating success, is well established for the evolution of animals and plants, but not for the evolution of fungi. Even though fungi do not have separate sexes, most filamentous fungi mate in a hermaphroditic fashion, with distinct sex roles, that is, investment in large gametes (female role) and fertilization by other small gametes (male role). Fungi compete to fertilize, analogous to ‘male‐male’ competition, whereas they can be selective when being fertilized, analogous to female choice. Mating types, which determine genetic compatibility among fungal gametes, are important for sexual selection in two respects. First, genes at the mating‐type loci regulate different aspects of mating and thus can be subject to sexual selection. Second, for sexual selection, not only the two sexes (or sex roles) but also the mating types can form the classes, the members of which compete for access to members of the other class. This is significant if mating‐type gene products are costly, thus signalling genetic quality according to Zahavi's handicap principle. We propose that sexual selection explains various fungal characteristics such as the observed high redundancy of pheromones at the B mating‐type locus of Agaricomycotina, the occurrence of multiple types of spores in Ascomycotina or the strong pheromone signalling in yeasts. Furthermore, we argue that fungi are good model systems to experimentally study fundamental aspects of sexual selection, due to their fast generation times and high diversity of life cycles and mating systems.  相似文献   

12.
Maternal effects on offspring phenotypes occur because mothers in many species provide an environment for their developing young. Although these factors are correctly "environmental" with respect to the offspring genome, their variance may have both a genetic and an environmental basis in the maternal generation. Here, reciprocal crosses between C57BL/6J and 10 LGXSM recombinant inbred (RI) strains were performed, and litters were divided at weaning into high-fat and low-fat dietary treatments. Differences between reciprocal litters were used to measure genetic maternal effects on offspring phenotypes. Nearly all traits, including weekly body weights and adult blood serum traits, show effects indicative of genetic variation in maternal effects across RI strains, allowing the quantitative trait loci involved to be mapped. Although much of the literature on maternal effects relates to early life traits, we detect strong and significant maternal effects on traits measured at adulthood (as much as 10% of the trait variance at 17 or more weeks after weaning). We also found an interaction affecting adult phenotype between the effects of maternal care between RI strain mothers and C57BL/6J mothers and a later environmental factor (dietary fat intake) for some age-specific weights.  相似文献   

13.
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life‐history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.  相似文献   

14.
对4 种移栽到温室中的蕨类植物根际土壤中的VA 菌根真菌孢子种群组成和季相变化进行了研究, 结果发现, VA菌根真菌孢子的产生具有明显的宿主依赖性和季相变化。在相同气候条件下, 不同植物根际土壤中的VA菌根真菌种群组成不同; 同种VA 菌根真菌在不同宿主植物根际土壤中, 孢子的丰富度有很大的差异。本文对影响VA菌根真菌孢子种群组成和季相变化的因素进行了讨论。  相似文献   

15.
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long‐lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long‐lived species is limited. In this study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long‐lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex‐specific evolutionary trade‐offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long‐lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.  相似文献   

17.
Parental effects can greatly affect offspring performance and are thus expected to impact population dynamics and evolutionary trajectories. Most studies have focused on maternal effects, whereas fathers are also likely to influence offspring phenotype, for instance when males transfer nutrients to females during mating. Moreover, although the separate effects of maternal age and the environment have been documented as a source of parental effects in many species, their combined effects have not been investigated. In the present study, we analyzed the combined effects of maternal and paternal age at reproduction and a mobility treatment in stressful conditions on offspring performance in the butterfly Pieris brassicae. Both paternal and maternal effects affected progeny traits but always via interactions between age and mobility treatment. Moreover, parental effects shifted from male effects expressed at the larval stage to maternal effects at the adult stage. Indeed, egg survival until adult emergence significantly decreased with father age at mating only for fathers having experienced the mobility treatment, whereas offspring adult life span decreased with increasing mother age at laying only for females that did not experience the mobility treatment. Overall, our results demonstrate that both parents’ phenotypes influence offspring performance through nongenetic effects, their relative contribution varying over the course of progeny's life.  相似文献   

18.
Maternal influences on progeny characters affect phenotypic correlations between characters expressed in maternal and progeny generations and consequently influence evolutionary responses to selection. Net selection on maternally influenced characters depends on selection both on the progeny character and on the maternal characters that influence it. I used seed dispersal in Cakile edentula as a system in which to identify the mechanisms of environmentally mediated maternal effects and to determine how selection on maternal characters alters the adaptive value of dispersal. In C. edentula, maternal morphology responds to conspecific density experienced by the mother. Maternal morphology in turn affects offspring (seed) dispersal and density and thereby offspring morphology and fitness. I estimated the magnitude of density-mediated maternal effects on dispersal and identified their mechanism by characterizing the plasticity of maternal morphology to density. I also measured density-dependent selection on maternal characters that influence dispersal. Maternal plasticity to density was caused by both allometric and nonallometric variation in morphology, and this plasticity resulted in a negative correlation between maternal and progeny density. Such negative maternal effects are expected to retard responses to selection. Maternal morphology influenced maternal fitness, in part through the relationship of fitness to maternal plant size and in part through size-independent fitness effects. Maternal phenotypes that promote dispersal, and thereby increase progeny fitness, were associated with decreased maternal fitness. Selection on dispersal at the level of progeny favors increased dispersal; maternal influences on dispersal, however, not only cause a greatly reduced adaptive value of dispersal but lead to the prediction of a slower response to selection.  相似文献   

19.
Individual responses to dietary variation represent a fundamental component of fitness, and nutritional adaptation can occur over just a few generations. Maternal effects can show marked proximate responses to nutrition, but whether they contribute to longer term dietary adaptation is unclear. Here, we tested the hypotheses that maternal effects: (i) contribute to dietary adaptation, (ii) diminish when dietary conditions are constant between generations, (iii) are trait‐specific and (iv) interact with high‐ and low‐quality food. We used experimental evolution regimes in the medfly (Ceratitis capitata) to test these predictions by subjecting an outbred laboratory‐adapted population to replicated experimental evolution on either constant high calorie sugar (‘A’) or low‐calorie starch (‘S’) larval diets, with a standard adult diet across both regimes. We measured the contribution of maternal effects by comparing developmental and adult phenotypes of individuals reared on their own diet with those swapped onto the opposite diet for either one or two generations (high and low maternal effect conditions, respectively), both at the start and after 30 generations of selection. Initially, there were strong maternal effects on female body mass and male mating success but not larval survival. Interestingly, the initial maternal effects observed in female body mass and male mating success showed sex‐specific interactions when individuals from high calorie regimes were tested on low calorie diets. However, as populations responded to selection, the effects of maternal provisioning on all traits diminished. The results broadly supported the predictions. They show how the contribution of maternal effects to dietary responses evolves in a context‐dependent manner, with significant variation across different fitness‐related traits. We conclude that maternal effects can evolve during nutritional adaptation and hence may be an important life history trait to measure, rather than to routinely minimize.  相似文献   

20.
Spores of Bacillus species can remain dormant and resistant for years, but can rapidly ‘come back to life’ in germination triggered by agents, such as specific nutrients, and non‐nutrients, such as CaDPA, dodecylamine and hydrostatic pressure. Major events in germination include release of spore core monovalent cations and CaDPA, hydrolysis of the spore cortex peptidoglycan (PG) and expansion of the spore core. This leads to a well‐hydrated spore protoplast in which metabolism and macromolecular synthesis begin. Proteins essential for germination include the GerP proteins that facilitate germinant access to spores' inner layers, germinant receptors (GRs) that recognize and respond to nutrient germinants, GerD important in rapid GR‐dependent germination, SpoVA proteins important in CaDPA release and cortex‐lytic enzymes that degrade cortex PG. Rates of germination of individuals in spore populations are heterogeneous, and methods have been developed recently to simultaneously analyse the germination of multiple individual spores. Spore germination heterogeneity is due primarily to large variations in GR levels among individual spores, with spores that germinate extremely slowly and termed superdormant having very low GR levels. These and other aspects of spore germination will be discussed in this review, and major unanswered questions will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号