首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

2.
暗褐网柄牛肝菌Phlebopus portentosus与介壳虫形成的菌腔虫瘿是该菌营养机制研究的关键环节。本研究先后在云南、四川和广西3省区暗褐网柄牛肝菌产区的16个地点,对菌腔虫瘿的生态和生物学进行了大量的野外调查。发现根部着生菌腔虫瘿的寄主植物有31种,涉及16个科的28个属。与暗褐网柄牛肝菌形成菌腔虫瘿的介壳虫种类有12种,其中10种隶属粉蚧科Pseudococcidae、绵蚧科Monophlebidae、蚧科Coccidae各1种。在不同的寄主植物上菌腔虫瘿的寄生位置和形状会有所不同,与暗褐网柄牛肝菌菌丝形成菌腔虫瘿的寄主植物和介壳虫之间不存在专一性。上述研究结果为暗褐网柄牛肝菌的仿生栽培奠定了基础。  相似文献   

3.
The spatial heterogeneity hypothesis has been invoked to explain the increase in species diversity from the poles to the tropics: the tropics may be more diverse because they contain more habitats and micro-habitats. In this paper, the spatial heterogeneity hypothesis prediction was tested by evaluating the variation in richness of two guilds of insect herbivores (gall-formers and free-feeders) associated with Baccharis dracunculifolia (Asteraceae) along a latitudinal variation in Brazil. The seventeen populations of B. dracunculifolia selected for insect herbivores sampling were within structurally similar habitats, along the N-S distributional limit of the host plant, near the Brazilian sea coast. Thirty shrubs were surveyed in each host plant population. A total of 8 201 galls and 864 free-feeding insect herbivores belonging to 28 families and 88 species were sampled. The majority of the insects found on B. dracunculifolia were restricted to a specific site rather than having a geographic distribution mirroring that of the host plant. Species richness of free-feeding insects was not affected by latitudinal variation corroborating the spatial heterogeneity hypothesis. Species richness of gall-forming insects was positively correlated with latitude, probably because galling insect associated with Baccharris genus radiated in Southern Brazil. Other diversity indices and evenness estimated for both gall-forming and free feeding insect herbivores, did not change with latitude, suggesting a general structure for different assemblages of herbivores associated with the host plant B. dracunculifolia. Thus it is probable that, insect fauna sample in each site resulted of large scale events, as speciation, migration and coevolution, while at local level, the population of these insects is regulated by ecological forces which operate in the system.  相似文献   

4.
At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic analyses of scale insects, a group for which there appear to be few host‐use trade‐offs that would select against polyphagy, and for which passive wind‐dispersal should make host specificity costly. We infer a strong positive relationship between host range and diversification rate, and a marked asymmetry in cladogenetic changes in diet breadth. These results are consonant with a system of pervasive nonadaptive host specialization in which small, drift‐ and extinction‐prone populations are frequently isolated from persistent and polyphagous source populations. They also contrast with the negative relationship between diet breadth and taxonomic diversification that has been estimated in butterflies, a disparity that likely stems from differences in the average costs and benefits of host specificity and generalism in scale insects versus butterflies. Our results indicate the potential for nonadaptive processes to be important to diet‐breadth evolution and taxonomic diversification across herbivorous insects.  相似文献   

5.
In the tropics, antagonistic seed predation networks may have different properties than mutualistic pollination and seed dispersal networks, but the former have been considerably less studied. We tested whether the structure of antagonistic tripartite networks composed of host plants, insects developing within seeds and fruits, and their insect parasitoids could be predicted from plant phylogenetic distance and plant traits. We considered subsets of the networks (‘subnetworks') at three rainforest locations (Panama, Thailand, Papua New Guinea), based on insect families, plant families or plant functional groups. We recorded 3197 interactions and observed a low percentage of realized interactions, especially in Panama, where insect host specificity was higher than in Thailand or New Guinea. Several factors may explain this, including insect faunal composition, incidence of dry fruits, high fruit production and high occurrence of Fabaceae at the Panamanian site. Host specificity was greater among seed-eaters than pulp-eaters and for insects feeding on dry fruits as opposed to insects feeding on fleshy fruits. Plant species richness within plant families did not influence insect host specificity, but site characteristics may be important in this regard. Most subnetworks were extremely specialized, such as those including Tortricidae and Bruchinae in Panama. Plant phylogenetic distance, plant basal area and plant traits (fruit length, number of seeds per fruit) had important effects on several network statistics in regressions weighted by sampling effort. A path analysis revealed a weak direct influence of plant phylogenetic distance on parasitoid richness, indicating limited support for the ‘nasty host hypothesis'. Our study emphasizes the duality between seed dispersal and seed predation networks in the tropics, as key plant species differ and host specificity tends to be low in the former and higher in the latter. This underlines the need to study both types of networks for sound practices of forest regeneration and conservation.  相似文献   

6.
The evolution of insect/vertebrate associations   总被引:1,自引:0,他引:1  
The evolution of close vertebrate associations has occurred in seven orders of insects, resulting in a great diversity of interactions which range from commensalism to true parasitism. The evolution of each taxon of vertebrate associates is discussed in turn, some new ideas on the development of certain groups are presented and, on a broader scale, a general model for the evolution of ectoparasitic insects is proposed. It argues that all vertebrate associates have evolved along one of two macroevolutionary pathways which differ only in the sequencing of adaptations facilitating host association and host feeding. These pathways lead to parasite types which differ greatly in their life history and intimacy of host association.
Some microevolutionary processes influencing the diversification of ectoparasites are discussed, in particular the process of insect/vertebrate coevolution and the forms this may take. Host specificity, one consequence of coevolution, is recognised as an important factor influencing the structure of ectoparasite communities, and a hypothesis is presented that competition between ectoparasite species, mediated by host defensive responses, is also important in determining community structure.  相似文献   

7.
植物为数十万种昆虫提供各种资源,如食物、交配、产卵和躲避天敌的场所。目前对昆虫检测植物寄主的研究主要关注昆虫嗅觉系统和植物寄主挥发物之间的相互作用,对昆虫视觉系统发挥的作用关注较少。近年来,对昆虫视觉器官、光行为反应及分子生物学的研究表明,昆虫具有优异的视觉能力,能够辨别植物寄主的颜色、大小和轮廓,应该将视觉纳入昆虫检测植物寄主的研究中。昆虫能够利用视觉信号准确检测寄主,远距离时,主要依靠植物寄主轮廓检测寄主,近距离时,寄主的大小、颜色和形状发挥重要作用。利用昆虫视觉识别寄主的专一性研制诱捕装置,可为害虫的监测和防治提供一定的理论基础。  相似文献   

8.
Phytophagous insects have a close relationship with their host plants. For this reason, their interactions can lead to important changes in insect population dynamics and evolutionary trajectories. Next generation sequencing (NGS) has provided an opportunity to analyze omics data on a large scale, facilitating the change from a classical genetics approach to a more holistic understanding of the underlying molecular mechanisms of host plant use by insects. Most studies have been carried out on model species in Holarctic and temperate zones. In tropical zones, however, the effects of use of various host plants on evolutionary insect history is less understood. In the current review, we describe how omics methodologies help us to understand phytophagous insect–host plant interactions from an evolutionary perspective, using as example the Neotropical phytophagous insect West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), an economically important fruit crop pest in the Americas. Anastrepha obliqua could adopt a generalist or a specialist lifestyle. We first review the adaptive molecular mechanisms of phytophagous insects to host plants, and then describe the main tools to study phytophagous insect–host plant interactions in the era of omics sciences. The omics approaches will advance the understanding of insect molecular mechanisms and their influence on diversification and evolution. Finally, we discuss the importance of a multidisciplinary approach that integrates the use of omics tools and other, more classical methodologies in evolutionary studies.  相似文献   

9.
Aphytis melinus DeBach (Hymenoptera: Aphelinidae) is a biological control agent of diaspidid scale insects. The parasitoid has a narrow host range but its hosts are polyphagous. We determined the source of volatile cues the wasp uses to locate its few host species when those hosts occur on more than one host plant species. We addressed four questions in regard to the use of volatile cues in host location of California red scale, Aonidiella aurantii (Maskell) (Homoptera: Diaspididae): (1) Does A. melinus use volatile cues to assist in host location? (2) Are these cues innately recognized or learned? (3) Are cues produced by female California red scale, or from other sources? (4) Are the cues specific to the host or host plant? These questions were tested through the use of a Y-tube olfactometer. Female A. melinus used volatile cues to orient toward both infested and uninfested host plant material. Wasps learned these cues by associating odors from the host plant with host presence. They had no innate preferences for scale insect or host plant volatile stimuli. Contrary to previous studies, we found no evidence of orientation toward the female-produced sex pheromone of California red scale, nor to volatile cues from the attacked host stage. Wasps given experience with scale insects growing on lemon fruit subsequently oriented toward lemon and orange fruit and leaves. The scale species with which the wasp was given experience did not affect this preference. Wasps given experience with California red scale growing on squash did not orient toward infested lemon fruit. The host ranges of the parasitoid and its hosts are used to explain the adaptive value for the evolution of learned rather than fixed responses to cues used in foraging behavior.  相似文献   

10.
The idea that galling insects actively manipulate host plant chemistry has been previously documented but has not been quantified across a range of galler and host plant taxa. We present the first quantitative review of the relationship between insect galling and levels of secondary metabolites in host plants. Using meta-analytic techniques, we examined this relationship across 40 galler and host plant species combinations. We found that galling insects are associated with significantly higher levels of tannins and phenolics; however, no difference was found for volatiles. Hymenoptera, Diptera and Hemiptera were associated with higher levels of secondary metabolites; however, only Hymenoptera was significant. The climatic zone of the study area did not explain significant differences in gall-induced secondary metabolites. Overall the results show that the ability of galling insects to manipulate host plant secondary chemistry is widespread across insect and plant taxa. The evolutionary success of galling insects may be in part due to this unique ability.  相似文献   

11.
微生物对昆虫行为的影响研究进展   总被引:1,自引:0,他引:1  
在漫长的进化过程中,微生物与昆虫形成了多种形式的互作关系.微生物的广泛分布为与昆虫接触并影响昆虫的行为提供了背景条件.为了深入探究微生物影响昆虫行为的现象和机制,本文综述了微生物影响昆虫行为方面的研究进展.微生物通过产生可被昆虫识别的化学信号物质、参与昆虫或寄主植物信息化合物的合成等方式可影响昆虫对其寄主的定位和选择....  相似文献   

12.
Prediction of host plant range and ecological impact of exotic phytophagous insects, such as insects for classical biological control of weeds, represents a major challenge. Recently, the flowerhead weevil (Rhinocyllus conicus Fröl.), introduced from Europe into North America to control exotic thistles (Carduus spp.), has become invasive. It feeds heavily on some, but not all species of native North American thistles (Cirsium spp.). We hypothesized that such non-target use among native plants could be better predicted by knowledge of characteristic chemical profiles of secondary compounds to supplement the results of host specificity testing. To evaluate this hypothesis, we reviewed the literature on the chemistry of Cirsium and Carduus thistles. We asked what compounds are known to be present, what is known about their biological activity, and whether such information on chemical profiles would have better predicted realized host range and ecological effects of R. conicus in North America. We found an extensive, but incomplete literature on the chemistry of true thistles. Two main patterns emerged. First, consistent chemical similarities and interesting differences occur among species of thistles. Second, variation occurs in biologically active groups of characteristic compounds, specifically flavonoids, sterols, alkaloids and phenolic acids, that are known to influence host plant acceptance, selection, and feeding by phytophagous insects. Surprisingly, sesquiterpene lactones, which are characterisitic in closely related Asteraceae, have not been extensively reported for Cirsium or Carduus. The minimal evidence on sesquiterpene lactones may reflect extraction methods vs. true absence. In summary, our review suggests further research on thistle chemistry in insect feeding is warranted. Also, since the exotic Canada thistle (Cirsium arvense) is an invasive thistle of current concern in North America, such research on mechanisms underlying host range expansion by exotic insects would be useful.  相似文献   

13.
昆虫体内共生微生物能够占到昆虫生物量的1%~10%,主要包括细菌、真菌、古菌和病毒.昆虫与共生微生物共进化形成共生体,共生微生物在昆虫生物学性状、多样性形成、生态适应性与抗逆性等多方面发挥着重要的作用.昆虫中的农作物害虫严重影响农业生产.本文对2000年以来农业害虫共生微生物的多样性、研究方法和功能机制、共生微生物之间...  相似文献   

14.
Jan Scheirs  Luc De Bruyn 《Oikos》2002,96(1):187-191
The current approach for studying host selection by phytophagous insects is mainly based on optimal oviposition theory, i.e. the preference–performance hypothesis. Almost no attention has been given to optimal foraging theory. However, recent papers and additional evidence given in this work illustrate that also optimal foraging may shape host preference patterns of phytophagous insects. Therefore and because optimal foraging and optimal oviposition may oppose conflicting needs to phytophagous insects, we plea for an integration of optimal foraging and optimal oviposition in plant–insect research. We argue how this may improve our understanding of plant–insect interactions.  相似文献   

15.
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity‐based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within‐basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.  相似文献   

16.
Parasites commonly manipulate host behaviour, and among the most dramatic examples are diverse fungi that cause insects to die attached to leaves. This death-grip behaviour functions to place insects in an ideal location for spore dispersal from a dead body following host death. Fossil leaves record many aspects of insect behaviour (feeding, galls, leaf mining) but to date there are no known examples of behavioural manipulation. Here, we document, to our knowledge, the first example of the stereotypical death grip from 48 Ma leaves of Messel, Germany, indicating the antiquity of this behaviour. As well as probably being the first example of behavioural manipulation in the fossil record, these data support a biogeographical parallelism between mid Eocene northern Europe and recent southeast Asia.  相似文献   

17.
Several species in the fungal genus Cosmospora (synonym Nectria) (anamorph Fusarium) are specialist entomopathogens of armored scale insects (Diaspididae), known to cause periodic epizootics in host populations. Inconsistent mortality rates recorded under laboratory conditions prompted a study into the process of infection of armored scale insects by this fungus. Scale insect mortality following exposure to a Cosmospora sp. (Culture Collection Number: CC89) from New Zealand was related to insect age, with reproductively mature insects having a significantly higher infection rate than immature insects. Examination using scanning electron microscopy found no evidence that the fungus penetrated directly through the wax test (cap) of the scale insect or through the un-lifted interface between the test and the substrate on which the insect resided. However, fungal hyphae were observed growing beneath the test when the test of the reproductively mature insect lifted away from the substrate for the purpose of releasing crawlers, the mobile pre-settled juveniles. Once the hyphae of CC89 advanced under the test, germ-tubes readily penetrated the insect body through a number of natural openings (e.g. spiracles, vulva, stylet), with mycosis observed within seven days after inoculation. Direct penetration through the cuticle of the scale insect was not observed.  相似文献   

18.
Does fecundity drive the evolution of insect diet?   总被引:1,自引:0,他引:1  
We investigate whether egg load (a surrogate for fecundity) drives host specificity in a herbivorous insect. In many insects, including our study organism (Edith's checkerspot butterfly), both egg load and tendency to accept low-ranked hosts increase during each search for an oviposition site. Effects on host acceptance of egg load and passage of time are thereby potentially confounded. We conducted two experiments designed to disentangle these effects. In both experiments, we estimated the times of first acceptance of both a high-ranked and a low-ranked host, without allowing the insects to oviposit. In the first experiment, we measured egg load at the time of first acceptance of the low-ranked host. The later the time of first acceptance, the higher was the fecundity. We therefore reject the hypothesis that all insects accepted the low-ranked host at the same predetermined egg load. In the second experiment, we measured egg load 48 h after the high-ranked host was first accepted. We found no relationship between egg load and timing of acceptance of the low-ranked host. Insects with higher rates of egg accumulation did not accept the low-ranked host sooner. Taken together, these results suggest that acceptance of the low-ranked host is not driven directly by egg load. Rather, this acceptance results from some other process that is influenced by time since last oviposition. We conclude that there is no evidence to support the assumption that females with high rates of egg accumulation are more likely to accept low-ranked hosts.  相似文献   

19.
共生菌普遍存在于昆虫体内,它们能够为宿主昆虫提供生长发育所必需的氨基酸、固醇类等营养物质,还能提高昆虫适应高温、寄生虫、病毒等不利环境因素的能力,昆虫则为共生菌提供稳定的生存环境和营养物质,昆虫与共生菌相互依存。多数情况下,共生菌通过垂直传播在宿主代次间进行传播,即共生菌由母代传递给子代。结合最近几年相关研究,本文综述了不同昆虫共生菌的垂直传播模式。除极少数肠道共生菌通过污染卵壳被宿主幼虫取食得以垂直传播外,垂直传播的共生菌多为经卵传播。根据侵染时期的不同,共生菌经卵传播模式多数可分为以下4种:侵染宿主昆虫幼虫中的生殖干细胞、侵染宿主昆虫年轻雌成虫中的生殖干细胞、侵染宿主昆虫雌成虫中的成熟卵母细胞以及侵染宿主昆虫囊胚期胚胎。其中,有些共生菌是以共生菌菌胞整体侵染的方式进入到宿主卵巢。另外,少数肠道共生菌也通过卵巢进行垂直传播,此类共生菌先侵染卵巢侧输卵管并在侧输卵管聚集,待卵排放至侧输卵管时再进入到卵中。在文中,我们也探讨了昆虫共生菌垂直传播过程中的细胞机制和免疫机制,包括共生菌避开宿主免疫反应、共生菌通过内吞作用进入卵巢以及不同共生菌间的协同作用等。  相似文献   

20.
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号