共查询到20条相似文献,搜索用时 15 毫秒
1.
Yong-yu Xu Tong-xian Liu Gary L. Leibee Walker A. Jones 《Biocontrol Science and Technology》2004,14(7):713-723
Effects of eight insecticides on Diadegma insulare (Cresson), a parasitoid of the diamondback moth, Plutella xylostella L., were evaluated under the laboratory conditions. The insecticides were three azadirachtin-based products (Ecozin, Agroneem and Neemix), two Bacillus thuringiensis (Bt) products (Xentari and Crymax), indoxacarb, spinosad, and λ-cyhalothrin. When D. insulare pupae were treated, none of the insecticide treatments except λ-cyhalothrin significantly reduced adult emergence, with 76-90% adults emerged from the treated pupae. In the λ-cyhalothrin treatment, only 10% D. insulare pupae produced adult wasps. Indoxacarb, spinosad, and λ-cyhalothrin caused 100% D. insulare adult mortality in 24 h in Petri dishes sprayed with insecticides in the contact bioassays, and 95.8, 100 and 95.8% adult mortality in 24 h in the ingestion bioassays, respectively. In contrast, all three azadirachtin-based insecticides and the two Bt-insecticides caused only 0-10.4% mortality of D. insulare adults after ingestion. The surviving D. insulare from ingestion treatments with Bt- and azadirachtin-insecticides parasitized 50.8-67.6% of P. xylostella larvae, respectively, compare to 72.1% for the water control. After ingesting indoxacarb, spinosad and λ-cyhalothrin mixed in honey-water, both the females and the males lived significantly shorter than those ingesting Bt- and azadirachtin-insecticides and the non-insecticide honey-water. Effects of leaf residues of indoxacarb, spinosad and λ-cyhalothrin varied significantly. The leaf residues of spinosad had the least effects on D. insulare adults, and 7- and 10-day-old residue only caused 5.6 and 7.4% mortality in 24 h, whereas 10-day-old leaf residues of indoxacarb and λ-cyhalothrin caused 40.7 and 57.4% mortality in 24 h, respectively. 相似文献
2.
Genetically manipulated Brassica genotypes affect demography and performance of Diadegma semiclausum parasitizing Plutella xylostella 下载免费PDF全文
M. Nikooei Y. Fathipour M. Jalali Javaran M. Soufbaf 《Journal of Applied Entomology》2017,141(3):161-171
The performance of Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) on Plutella xylostella (L.) (Lepidoptera: Plutellidae) reared on canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma‐ray mutant‐RGS003 and one transgenic (PF) genotype was compared using the age‐stage, two‐sex life table parameters. All experiments were carried out in a growth chamber at 25 ± 1°C, 65 ± 5% RH and a photoperiod of 16 : 8 (L : D) h. There were significant differences in duration of different life stages of D. semiclausum on its host larvae reared on different plant genotypes. The shortest (12.27 days) and longest (15.21 days) pre‐adult developmental times were observed on cultivar‐RGS003 and hybrid‐Hyula401, respectively. The intrinsic rate of increase (r) in D. semiclausum ranged between 0.189/day (cultivar‐Opera) and 0.141/day (transgenic‐PF). Moreover, the highest (20.078 offspring) and lowest (12.027 offspring) net reproductive rates (R0) were observed on cultivar‐Opera and hybrid‐Hyula401. The mean generation time (T) of D. semiclausum was the highest (18.34 days) and lowest (15.05 days) on mutant‐RGS003 and cultivar‐RGS003. The maximum and minimum parasitism values of this parasitoid were observed on canola's progenitor (44.28%) and hybrid‐Hyula401 (37.09%). The heaviest pupae (3.82 mg) and females (3.22 mg) of the parasitoid were found on canola's progenitor and cultivar‐Opera, respectively. The results showed that performance of this parasitoid was better on canola's progenitor and cultivated plants known to have higher levels of glucosinolates concentration than others. 相似文献
3.
Leyun Wang Zihua Zhao Gimme H. Walter Michael J. Furlong 《Agricultural and Forest Entomology》2023,25(2):251-260
- The parasitoid Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae) has been widely adopted as a biological control agent for Plutella xylostella L. (Lepidoptera: Plutellidae) over the last 80 years. Earlier studies have found differential responses to temperature between the host and its parasitoid and demonstrated the multiple ways in which the parasitoid is more susceptible to elevated temperatures.
- Using data from experimental studies, the modelling package CLIMEX was used to investigate the suitability of current climates for the host and its parasitoid and the effects on their potential global geographical distributions. The study was then extended to investigate possible changes to these distributions that might result under different climate change scenarios by 2080. The models predict that the global distributions of both the host and parasitoid will be reduced. These changes will not be proportionate and many areas in tropical, sub-tropical, and temperate regions that are currently suitable for D. semiclausum are predicted to become unsuitable for the parasitoid, whereas retaining suitability for P. xylostella. The seasonal dynamics of both the host and parasitoid are also predicted to be significantly reshaped under climate change.
- Analysis of associations between annual P. xylostella outbreaks and weather conditions in three provinces in China with field data collected between 1995 and 2017 indicated significant effects of temperature on P. xylostella outbreaks at the beginning of the peak season in warmer provinces where P. xylostella can overwinter; such associations were not found in the colder provinces where it is unable to survive harsh winters.
4.
The nutritional physiology of the diamondback moth, Plutella xylostella, larvae was examined after parasitization by the solitary endoparasitoids Cotesia vestalis or Diadegma semiclausum. Examinations were performed in two phases, one was examined at the time point of 24 h post‐parasitization, and the other was done at the end of the 4th instar larvae of host. Rates of growth, food consumption, assimilation, excretion, and respiration were calculated as well as approximate digestibility and the rate ratios ECI (percent efficiency of conversion of ingested food to body substance), and ECD (percent efficiency of conversion of digested food to body substance). Parasitization by C. vestalis resulted in significant decrease in the rates of growth, feeding, excretion, assimilation, and respiration, but the final dry rate of respiration at the end of last larval stadium was elevated. The ECI and ECD were also reduced as the result of parasitization, but digestibility was increased. All these parameters in the larvae parasitized by D. semiclausum at 24 h post‐parasitization were also significantly changed compared to the control; however, these differences were quantitatively, but not qualitatively before pupation, similar to those resulted from parasitization by C. vestalis. In spite of the similarities of the parasitism‐induced effects caused by these endoparasitoids, the final metabolic rate, that is, the rate of intake of nutrients required to compensate for metabolism, was much lower in the larvae parasitized by C. vestalis than that of the larvae parasitized by D. semiclausum. All of the results discussed here will contribute toward explaining the different ways these two wasps regulate the parasitoid‐host relationship. 相似文献
5.
6.
The use of floral resources to improve the efficiency of natural enemies has grown in recent years, although their effect on pest populations has been overlooked. To understand how access to food resources by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae) affects their reproduction, the effects of amino acids and carbohydrates (i.e. fructose, glucose and sucrose) on the longevity, lifetime fecundity, egg viability and population growth of this important pest of brassicas are evaluated. Carbohydrate intake increases longevity, oviposition period and lifetime fecundity of P. xylostella. Oviposition period and fecundity are six‐fold higher in females that consumed carbohydrates. By contrast, amino acid intake by adults does not affect reproductive parameters, even when mixed with carbohydrates. The estimated demographic parameters indicate that the adult diet is important for pest population growth because the net reproductive rate and the intrinsic rate of increase are higher when females have access to carbohydrates. These results are important from both physiological and ecological points of view. The increasing use of flowering plants as a microhabitat and food source for natural enemies may also result in benefits for herbivorous insects, compromising any success in pest control. 相似文献
7.
Effect of host plants on the infectivity of nucleopolyhedrovirus to Spodoptera exigua larvae 下载免费PDF全文
Previous studies have shown that the infectivity of baculovirus to herbivores is affected by phytochemicals ingested during the acquisition of viral inoculum on the foliage of host plants. Here, we measured the effects of 14 host plant species on the infectivity of Spodoptera exigua nucleopolyhedrovirus (SeNPV) to its larvae. The order of the LD50 values of SeNPV among the host plants was Ipomoea aquatica > Brassica oleracea > Raphanus sativus > Amaranthus tricolor > Spinacia oleracea > Vigna unguiculata > Solanum melongena > Capsicum annuum > Apium graveolens > Allium fistulosum > Lactuca sativa > Brassica chinensis > Zea mays > Glycine max, with 940.1 ± 2.26, 424.0 ± 0.60, 295.2 ± 1.13, 147.3 ± 0.63, 138.6 ± 0.22, 119.9 ± 0.07, 119.8 ± 0.02, 109.2 ± 0.18, 104.8 ± 0.62, 102.1 ± 0.66, 97.9 ± 0.22, 89.9 ± 0.32, 79.0 ± 0.13 and 64.0 ± 0.38 OBs per larva, respectively, and the values of mean time to death of virus‐infected larvae were 6.21 ± 0.11, 7.12 ± 0.10, 7.33 ± 0.21, 6.97 ± 0.02, 7.06 ± 0.01, 7.29 ± 0.03, 7.32 ± 0.05, 7.07 ± 0.08, 7.24 ± 0.11, 7.09 ± 0.13, 7.50 ± 0.06, 7.23 ± 0.01, 7.30 ± 0.02 and 7.19 ± 0.07 days, respectively. The mean time to death of larvae decreased with increasing viral dose, and corrected mortality decreased as the larval mean time to death increased. These findings have significance for understanding the effects of host plants on the infectivity of baculovirus to noctuids. 相似文献
8.
Lin Jie Zhang Zhao Li Wu Kuan Fu Wang Qun Liu Hua Mei Zhuang Gang Wu 《Ecology and evolution》2015,5(2):515-530
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed. 相似文献
9.
Xiao‐Li Lin Qin‐Jian Pan Hong‐Gang Tian Angela E. Douglas Tong‐Xian Liu 《Insect Science》2015,22(3):375-385
Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture‐dependent method and PCR‐DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty‐five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. 相似文献
10.
11.
Engineering plants to reflect light: strategies for engineering water‐efficient plants to adapt to a changing climate 下载免费PDF全文
Population growth and globally increasing standards of living have put a significant strain on the energy–food–water nexus. Limited water availability particularly affects agriculture, as it accounts for over 70% of global freshwater withdrawals (Aquastat). This study outlines the fundamental nature of plant water consumption and suggests a >50% reduction in renewable freshwater demand is possible by engineering more reflective crops. Furthermore, the decreased radiative forcing resulting from the greater reflectivity of crops would be equivalent to removing 10–50 ppm CO2 from the atmosphere. Recent advances in engineering optical devices and a greater understanding of the mechanisms of biological reflectance suggest such a strategy may now be viable. Here we outline the challenges involved in such an effort and suggest three potential approaches that could enable its implementation. While the local benefits may be straightforward, determining the global externalities will require careful modelling efforts and gradually scaled field trials. 相似文献
12.
José Domingos Ribeiro Neto Bruno Ximenes Pinho Sebastian Tobias Meyer Rainer Wirth Inara Roberta Leal 《Entomologia Experimentalis et Applicata》2012,144(2):209-215
Leaf‐cutting ants (LCA) are polyphagous and dominant herbivores throughout the Neotropics that carefully select plant individuals or plant parts to feed their symbiotic fungus. Although many species‐specific leaf traits have been identified as criteria for the choice of food plants, the factors driving intraspecific herbivory patterns in LCA are less well studied. Herein, we evaluate whether or not drought‐stressed native plants are a preferred food source using free‐living colonies of two leaf‐cutting ants, Atta sexdens L. (Hymenoptera: Formicidae: Attini), in combination with five plant species, Ocotea glomerata Nees (Lauraceae), Lecythis lurida S. A. Mori (Lecythidaceae), Miconia prasina DC (Melastomataceae), Tovomita brevistaminea Engl. (Clusiaceae), and Tapirira guianensis Aubl. (Anacardiaceae), and Atta cephalotes L., in combination with two plant species, O. glomerata and Licania tomentosa Benth. (Chrysobalanaceae). In dual‐choice bioassays, ants removed about three times more leaf area from drought‐stressed plants compared to control plants. Both leaf‐cutting ant species consistently preferred drought‐stressed plants for all species tested, except T. guianensis. The mean acceptability index – expressing the preference for one of two options on a scale of 0 to 1 – of drought‐stressed plants ranged from 0.65 to 0.86 across plant species, and the preference did not differ significantly among the tested plant species. Our results suggest that selection of drought‐stressed individuals is a general feature of food plant choice by leaf‐cutting ants irrespective of ant or plant species. As human‐modified forest assemblages across the Neotropics are increasingly prone to drought stress, the documented preference of Atta for drought‐stressed plants may have tangible ecological implications. 相似文献
13.
Australian native flowering plants enhance the longevity of three parasitoids of brassica pests 下载免费PDF全文
Sunita Pandey Azizur Rahman Geoff M. Gurr 《Entomologia Experimentalis et Applicata》2018,166(4):265-276
Floral resources from native plants that are adapted to the local environment could be more advantageous than the use of nonnative plants. In Australia, there is a dearth of information on the benefits of native plants to natural enemies and their selectivity against pests. Accordingly, we examined the longevity of the parasitoids Diaeretiella rapae (McIntosh) and Cotesia glomerata (L.) (both Hymenoptera: Braconidae), and Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) exposed to flowering shoots from Australian native plants which was compared with the nonnative buckwheat (Fagopyrum esculentum), often used in conservation biological control. Longevity of parasitoids was significantly enhanced by the Australian natives Westringia fruticosa, Mentha satureioides, Callistemon citrinus, Leptospermum cv. ‘Rudolph’, Grevillea cv. ‘Bronze Rambler’, Myoporum parvifolium, Lotus australis, and nonnative F. esculentum. The highest mean survival by native plant species was 3.4× higher for D. rapae with Leptospermum sp. and 4.3× higher for D. semiclausum with M. parvifolium. For C. glomerata, Grevillea sp. increased longevity by 6.9× compared with water only. Longevity of Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major crop pest, was enhanced by all plants against which it was screened except Acacia baileyana, a species that had no effect on parasitoid longevity. Several Australian native plant species that benefit parasitoids were identified. None of the plant species provided a selective benefit to the parasitoid D. semiclausum compared with its host P. xylostella; however, the benefit of M. parvifolium and Grevillea sp. on the longevity of D. semiclausum was relatively higher compared with the pest. These results suggest the need for field studies to determine whether native Australian plants increase P. xylostella impact in nearby brassica crops. 相似文献
14.
Temperature‐sensitive fitness cost of insecticide resistance in Chinese populations of the diamondback moth Plutella xylostella 下载免费PDF全文
Alleles conferring a higher adaptive value in one environment may have a detrimental impact on fitness in another environment. Alleles conferring resistance to pesticides and drugs provide textbook examples of this trade‐off as, in addition to conferring resistance to these molecules, they frequently decrease fitness in pesticide/drug‐free environments. We show here that resistance to chlorpyrifos, an organophosphate (OP), in Chinese populations of the diamondback moth, Plutella xylostella, is conferred by two mutations of ace1 – the gene encoding the acetylcholinesterase enzyme targeted by OPs – affecting the amino acid sequence of the corresponding protein. These mutations were always linked, consistent with the segregation of a single resistance allele, ace1R, carrying both mutations, in the populations studied. We monitored the frequency of ace1R (by genotyping more than 20 000 adults) and the level of resistance (through bioassays on more than 50 000 individuals) over several generations. We found that the ace1R resistance allele was costly in the absence of insecticide and that this cost was likely recessive. This fitness costs involved a decrease in fecundity: females from resistant strains laid 20% fewer eggs, on average, than females from susceptible strains. Finally, we found that the fitness costs associated with the ace1R allele were greater at high temperatures. At least two life history traits were involved: longevity and fecundity. The relative longevity of resistant individuals was affected only at high temperatures and the relative fecundity of resistant females – which was already affected at temperatures optimal for development – decreased further at high temperatures. The implications of these findings for resistance management are discussed. 相似文献
15.
Waqar Jaleel Shafqat Saeed Qamar Saeed Muhammad Nadir Naqqash Muhammad Umair Sial Qurat Ul Aine Lei Yanyuan Zhao Rui Yurong He Lihua Lu 《Entomological Research》2019,49(4):151-157
Plutella xylostella is an important pest of cruciferous crops worldwide. However, information regarding the age‐stage, two‐sex life parameters of P. xylostella, which is vital for designing more effective control methods, is currently lacking. The present study reports age‐stage, two‐sex life table parameters for P. xylostella on napa cabbage (Brassica oleracea var. napa), white cabbage (B. oleracea var. capitata), and cauliflower (B. oleracea var. botrytis) under laboratory conditions at 25 ± 2°C, 50–60% relative humidity, and a 16‐h light : 8‐h dark photoperiod. The time for development from an egg to a male or female adult P. xylostella on white cabbage (mean [± SE] 41.15 ± 0.54 and 39.50 ± 0.54 days, respectively) was significantly longer than that on cauliflower and napa cabbage. Furthermore, P. xylostella fecundity on cauliflower (261.90 ± 4.53 eggs female) was significantly highest than on napa cabbage and white cabbage. Intrinsic rate of increase (r) and finite rate of increase (λ) were highest on cauliflower 0.182 day?1 and 1.199 day?1 respectively as comparison to napa cabbage and white cabbage. The highest gross reproductive rate (GRR) and net reproductive rates (R0) of P. xylostella 65.87 and 52.58 respectively on cauliflower then those of other hosts. The findings of the present study indicate that cauliflower is the most suitable cultivar (host) for the development of P. xylostella. Based on these findings, crops like cauliflower can be used as trap crops when napa cabbage and white cabbage are the main crops. 相似文献
16.
Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants 下载免费PDF全文
Elizabeth G. Pringle Alexandria Novo Ian Ableson Raymond V. Barbehenn Rachel L. Vannette 《Ecology and evolution》2014,4(21):4065-4079
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. 相似文献
17.
Shun Kumashiro Keiichiro Matsukura Shuhei Adachi Masaya Matsumura Makoto Tokuda 《Entomologia Experimentalis et Applicata》2016,160(1):18-27
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects. 相似文献
18.
Zhengqun Zhang Zongxiu Luo Yu Gao Lei Bian Xiaoling Sun Zongmao Chen 《Entomologia Experimentalis et Applicata》2014,153(2):156-169
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is a serious pest of tea crops in China. The effectiveness of five aromatic non‐host plants, Corymbia citriodora (Hook.) (Myrtaceae), Ocimum basilicum L. (Lamiaceae), Lavandula pinnata L. (Lamiaceae), Ruta graveolens L. (Rutaceae), and Rosmarinus officinalis L. (Lamiaceae), was investigated to determine their ability to suppress E. vitis on tea plants. Volatile organic compounds derived from L. pinnata, R. officinalis, and C. citriodora were found to repel leafhoppers and to mask the host's odors. Intercropping L. pinnata and C. citriodora with tea plants significantly reduced the E. vitis population levels in the tea plantation associated with higher population densities of generalist predators. The volatile compounds from the five non‐host plants were collected by headspace absorption under field conditions, and the 10 major components were identified. Qualitative and quantitative differences were found among the five odor profiles. Moreover, the emission dynamics of non‐host volatiles were monitored. Non‐host volatile emissions showed two peak periods, one in the spring and one in the autumn period. These peaks were almost consistent with the population dynamics of E. vitis. Our findings suggested that this newer approach to ecologically based, sustainable pest management implemented via intercropping with non‐host aromatic plants such as L. pinnata and C. citriodora offers a promising alternative to chemical control of the leafhopper population. 相似文献
19.
20.
Gurion C.K. Ang Myron P. Zalucki Michael J. Furlong 《Entomologia Experimentalis et Applicata》2016,160(1):28-39
Temporal changes in the pre‐ and post‐alighting responses of mated female diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), to two species of Brassica (Brassicaceae) host plants induced by larval feeding were studied using olfactometer and oviposition assays. Females displayed strong olfactory and oviposition preferences for herbivore‐induced common cabbage (Brassica oleracea var. capitata L. cv. sugarloaf) plants over intact plants; these preferences decreased with time and disappeared by the 7th day after induction. In herbivore‐induced common cabbage plants, eggs were clustered near feeding damage on the younger leaves (leaves 5–7), whereas in intact plants, eggs were clustered on the stem and lower leaves (leaves 1–4) . However, as the time interval between larval feeding and oviposition increased, more eggs were laid on the lower leaves of induced plants. This demonstrates a change in egg distribution from the pattern associated with induced plants to that associated with intact plants. In contrast, females displayed strong olfactory and oviposition preferences for intact Chinese cabbage [Brassica rapa ssp. pekinensis (Lour.) Hanelt cv. Wombok] plants over induced plants; these preferences decreased with time and disappeared by the 5th day after induction. More eggs were laid on the upper leaves (leaves 4–6) than on the lower leaves (leaves 1–3) of intact Chinese cabbage plants at first, but the distribution changed over time until there were no significant differences in the egg count between upper and lower leaves by the 4th day post induction. For both host plant species, pre‐alighting responses of moths were reliable indicators of post‐alighting responses on the first 2 days post induction. The results suggest that temporal changes in a plant's profile (chemical or otherwise) following herbivory may influence attractiveness to an insect herbivore and be accompanied by changes in olfactory and oviposition preferences. 相似文献