首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of three herbicides on soil microbial biomass and activity   总被引:8,自引:0,他引:8  
Three post-emergence herbicides (2,4-D, picloram and glyphosate) were applied to samples of an Alberta agricultural soil at concentrations of 0, 2, 20, and 200 μg g−1. The effects of these chemicals on certain microbial variables was monitored over 27 days. All herbicides caused enhancement of basal respiration but only for 9 days following application, and only for concentrations of 200 μg g−1. Substrate-induced respiration was temporarily depressed by 200 μg g−1 picloram and 2,4-D, and briefly enhanced by 200 μg g−1 glyphosate. It is concluded that because changes in microbial variables only occurred at herbicide concentrations of much higher than that which occurs following field application, the side-effects of these chemicals is probably of little ecological significance.  相似文献   

2.
The survival of a Sphingomonas species that was introduced into pentachlorophenol (PCP)-contaminated soil was monitored with two complementary methods, a respiration-based assay and a most probable number (MPN) technique. Sphingomonas chlorophenolicastrain RA2 is a PCP-mineralizing bacterium that was introduced into soil contaminated with a range of PCP concentrations (0–300 μg PCP g−1 soil). The population of introduced microorganisms was followed for 170 days using a substrate-induced growth-response method and a MPN assay that specifically targets PCP-mineralizing bacteria. Varying the initial PCP concentration resulted in the emergence of three distinct patterns of survival. In soil contaminated with 300 μg PCP g−1 the population of S. chlorophenolica strain RA2 immediately declined following introduction, increased by 200-fold and leveled off by the end of the 170-day incubation. In contrast, populations of S. chlorophenolica strain RA2 declined to levels below detection limits in uncontaminated soil by the end of the experiment. Intermediate PCP concentrations (10–100 μg PCP g−1 soil) resulted in the establishment of S. chlorophenolica strain RA2 that slowly declined in numbers. These results indicate that Sphingomonas chlorophenolica strain RA2 is an effective colonizer of PCP-contaminated soil but will not persist in the absence of PCP. Received 14 April 1999/ Accepted in revised form 24 June 1999  相似文献   

3.
Critical levels of selenium in raya (Brassica juncea Czern L.), maize (Zea mays L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were worked out by growing these crops in an alkaline silty loam soil treated with different levels of selenite-Se ranging from 1 to 25 μg g−1 soil. Significant decrease in dry matter yield was observed above a level of 5 μg Se g−1 soil in raya and maize; 4 μg Se g−1 soil in wheat and 10 μg Se g−1 soil in rice shoots. The critical level of Se in plants above which significant decrease in yield would occur was found to be 104.8 μg g−1 in raya, 76.9 μg g−1 in maize, 41.5 μg g−1 in rice and 18.9 μg g−1 in wheat shoots. Significant coefficients of correlation were observed between Se content above the critical level and dry matter yield of raya as well as rice (r = −0.99, P ≤ 0.01), wheat (r = −0.97, P ≤ 0.01) and maize ((r = −0.96, P ≤ 0.01). A synergistic relationship was observed between S and Se content of raya (r = 0.96, P ≤ 0.01), wheat (r = 0.89, P ≤ 0.01), rice (r = 0.85, P ≤ 0.01) and maize (r = 0.84, P ≤ 0.01). Raya, maize and rice absorbed Se in levels toxic for animal consumption (i.e. > 5 mg Se kg−1) when the soil was treated with more than 1.5 μg Se g−1. In case of wheat, application of Se more than 3 μg g−1 soil resulted in production of toxic plants.  相似文献   

4.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

5.
The vitamin content of microalgae used in aquaculture   总被引:4,自引:0,他引:4  
The vitamin content in four Australian microalgae, a Nannochloropsis-like sp., Pavlova pinguis, Stichococcus sp. and Tetraselmis sp., were examined. These were grown under a 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Typically, the content showed a two- to three fold range between the species. When expressed on a dry weight basis, the content of ascorbate ranged from 1.3 to 3.0 mg g−1, β-carotene from 0.37 to 1.05 mg g−1, α-tocopherol from 0.07 to 0.29 mg g−1, thiamine from 29 to 109 μg g−1, riboflavin from 25 to 50 μg g−1, total folates from 17 to 24 μg g−1, pyridoxine from 3.6 to 17 μg g−1, cobalamin from 1.70 to 1.95 μg g−1 and biotin from 1.1 to 1.9 μg g−1. Retinol was detected only in Tetraselmis sp. (2.2 μg g−1); any vitamins D2 or D3 were below the detection limit (≤0.45 μg g−1). Nannochloropsis sp. was also grown under a 24:0 h light:dark light cycle and harvested at stationary phase. The content of most vitamins in Nannochloropsis sp. cultures differed significantly, and the degree of variation was similar to that observed between the four species grown under 12:12 h light:dark regimen (100 μmol photon m−2s−1) and harvested during late-logarithmic phase. Thiamine content was also examined in six non-Australian strains commonly used in aquaculture, Chaetoceros muelleri, Thalassiosira pseudonana, Nannochloris atomus, Nannochloropsis oculata, Isochrysis sp. (T.ISO) and Pavlova lutheri. Values (average 61 μg g−1; range 40 to 82) were similar to those in the Australian strains (average 61 μg g−1; range 29 to 109) and increased during stationary phase (average 94 μg g−1; 38 to 131). Comparison of the data with the known nutritional requirements for marine fish species and prawns suggests that the microalgae should provide excess or adequate levels of the vitamins for aquaculture food chains. The data may be used to guide the content of vitamins included in micro-diets developed as replacements for live diets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Summary The sensitivity of the mineralization of nitrogen by a range of soils contaminated with heavy metals (up to 340 μg Cd g−1, 7500 μg Pb g−1 and 34000 μg Zn g−1) to the addition of heavy metals in solution were studied using pot incubations (ammonification) and a soil perfusion technique (nitrification). The ammonification of peptone showed little correlation between treatments with Cd, Zn (1000 and 5000 μg g−1) and Pb (10000 and 20000 μg g−1) and origin of the soil. Nitrification was considerably more sensitive to heavy metals than ammonification. All the soils had active, often large, populations of ammonifying and nitrifying organisms which showed substantial similarities between the soils. The rate of nitrifying activity (NO3−N production) was logrithmic in most cases. The presence of tolerant populations of nitrifying organisms in the contaminated soils was demonstrated. Tolerance was also eventually acquired after a longer lag phase, by the non-contaminated soil populations although the rate of activity was often reduced. Metals added in solution were adsorbed by the soil within 4 hours. Differences in toxicity between metal salts (chlorides, sulphates and acetate) were attributed to the amount left in solution. However, in many instances, acetate was found to stimulate all the stages in the mineralisation of nitrogen.  相似文献   

7.
Fungal biomass associated with decaying leaf litter in a stream   总被引:1,自引:0,他引:1  
Summary Fungal biomass, measured as ergosterol content, was determined on alder leaf litter incubated during autumn in a softwater Pyrenean stream. The ergosterol content of the leaf litter increased rapidly to a maximum of 462 μg/g detrital dry mass. Ergosterol contents of aquatic Hyphomycetes grown in shake culture were typically ≤5 mg/g mycelial dry mass. Using the corresponding ergosterol-to-biomass conversion factor of 200, peak fungal mass accounted for 9.2% of total system mass, or 10.2% of leaf dry mass. For the period of highest activity (incubation days 7–28), net fungal production on leaf litter was estimated as 2.3 mg d−1 g−1 leaf mass. A conservative estimate of the growth efficiency for the same period was 105 mg mycelial mass per gram leaf mass degraded, assuming that non-leaf organic matter did not constitute an important carbon source supporting fungal production.  相似文献   

8.
Fungal biomass in the decaying cones ofPinus densiflora was investigated. Leaching, immobilization and mobilization phases were recognized in the decomposition process of cones. Fungal biomass was estimated by the agar-film technique, using a conversion factor of 0.62 mg dry wt. mm−3 of hyphal volume to biomass and a factor of 2.5 for in-efficiencency of homogenization. The fungal biomass was 4.9±2.1 (mean±S.D.) mg dry wt. g−1 dry matter in the cones on the tree, 11±6 mg g−1 in the leaching phase, 19±7 mg g−1 in the immobilization phase and 30±15 mg g−1 in the mobilization phase. It significantly increased after cones had lain on the forest floor, and also in the immobilization phase. The latter result suggests that the fungal biomass contributed to the immobilization of nitrogen in the decomposition process. The ratio of ergosterol content to fungal biomass in the cones was 2.9–8.8 μg mg−1 dry wt., lying in the range of 2–16 μg mg−1 reported for mycelia. This suggested that the estimate of fungal biomass was reasonable. Reduction in this ratio with the dry weight loss in the cones suggested that the proportion of relatively active fungal biomass decreased with the progress of decomposition.  相似文献   

9.
A survey of mercury (Hg) and selenium (Se) contents was performed in fish collected from lakes located in two National Parks of the northern patagonian Andean range. Two native species, catfish (Diplomystes viedmensis) and creole perch (Percichthys trucha), and three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis), were caught from lakes Nahuel Huapi, Moreno, Traful, Espejo Chico, and Guillelmo belonging to Nahuel Huapi National Park and from lakes Futalaufquen and Rivadavia, Los Alerces National Park. In lake Moreno, fish diet items were analyzed and rainbow trout grown in a farm. Hg and Se were measured in muscle and liver tissues by instrumental neutron activation analysis. The average concentrations in muscle of Hg for all species, ages, and lakes are between 0.4 to 1.0 μg g−1 dry weight (DW) with a few fish, mainly native, exceeding the United States Environmental Protection Agency health advisory for freshwater fish limited consumption, and from 0.8 to 1.5 μg g−1 DW for Se. Average concentrations in liver of Hg in all species range from 0.4 to 0.9 μg g−1 DW. Brown trout, the top predator in these lakes, showed the lowest average Hg burden in both tissues. Se concentrations in the liver of brown and rainbow trout, up to 279 μg g−1 DW, are higher than those expected for nearly pristine lakes, exceeding 20 μg g−1 DW, the threshold concentration associated with Se toxicity. These species show lower Hg contents in muscle, suggesting a possible detoxification of Hg by a Se-rich diet. Creole perch and velvet catfish livers have lower Se concentrations, with a narrower span of values (2.3 to 8.5 μg g−1 and 3.3 to 5.5 μg g−1 DW respectively).  相似文献   

10.
The effect of glucose addition (0 and 500 μg C g−1 soil) and nitrate (NO3) addition (0, 10, 50 and 500 μg NO3–N g−1 soil) on nitric oxide reductase (cnorB) gene abundance and mRNA levels, and cumulative denitrification were quantified over 48 h in anoxic soils inoculated with Pseudomonas mandelii. Addition of glucose-C significantly increased cnorB p (P. mandelii and related species) mRNA levels and abundance compared with soil with no glucose added, averaged over time and NO3 addition treatments. Without glucose addition, cnorB p mRNA levels were higher when 500 μg NO3–N g−1 soil was added compared with other NO3 additions. In treatments with glucose added, addition of 50 μg NO3–N g−1 soil resulted in higher cnorB p mRNA levels than soil without NO3 but was not different from the 10 and 500 μg NO3–N g−1 treatments. cnorB p abundance in soils without glucose addition was significantly higher in soils with 500 μg NO3–N g−1 soil compared to lower N-treated soils. Conversely, addition of 500 μg NO3–N g−1 soil resulted in lower cnorB p abundance compared with soil without N-addition. Over 48 h, cumulative denitrification in soils with 500 μg glucose-C g−1 soil, and 50 or 500 μg NO3–N g−1 was higher than all other treatments. There was a positive correlation between cnorB p abundance and cumulative denitrification, but only in soils without glucose addition. Glucose-treated soils generally had higher cnorB p abundance and mRNA levels than soils without glucose added, however response of cnorB p abundance and mRNA levels to NO3 supply depended on carbon availability.  相似文献   

11.
The spatial distribution of organic soil nitrogen (N) in alpine tundra was studied along a natural environmental gradient, covering five plant communities, at the Latnjajaure Field Station, northern Swedish Lapland. The five communities (mesic meadow, meadow snowbed, dry heath, mesic heath, and heath snowbed) are the dominant types in this region and are differentiated by soil pH. Net N mineralization, net ammonification, and net nitrification were measured using 40-day laboratory incubations based on extractable NH4+ and NO3. Nitrification enzyme activity (NEA), denitrification enzyme activity (DEA), amino acid concentrations, and microbial respiration were measured for soils from each plant community. The results show that net N mineralization rates were more than three times higher in the meadow ecosystems (mesic meadow 0.7 μg N g−1 OM day−1 and meadow snowbed 0.6 μg N g−1 OM day−1) than the heath ecosystems (dry heath 0.2 μg N g−1 OM day−1, mesic heath 0.1 μg N g−1 OM day−1 and heath snowbed 0.2 μg N g−1 OM day−1). The net N mineralization rates were negatively correlated to organic soil C/N ratio (r = −0.652, P < 0.001) and positively correlated to soil pH (r = 0.701, P < 0.001). Net nitrification, inorganic N concentrations, and NEA rates also differed between plant communities; the values for the mesic meadow were at least four times higher than the other plant communities, and the snowbeds formed an intermediate group. Moreover, the results show a different pattern of distribution for individual amino acids across the plant communities, with snowbeds tending to have the highest amino acid N concentrations. The differences between plant communities along this natural gradient also illustrate variations between the dominant mycorrhizal associations in facilitating N capture by the characteristic functional groups of plants. Responsible Editor: Bernard Nicolardot  相似文献   

12.
Arsenic content of cyanobacterial biomass, soil and water samples from arsenic-contaminated area of eastern India were estimated. It was found that arsenic content in cyanobacterial biomass (276.9 μg g−1) was more than soil (19.01 μg g−1) or water sample (244.13 μg L−1). Shallow tube well water showed more arsenic (244.13 μg L−1) than deep tube well water (146.13 μg L−1). Arsenic resistant genera recorded from the contaminated area were Oscillatoria princeps, Oscillatoria limosa, Anabaena sp. and Phormidium laminosum. Among these, P. laminosum was isolated and exposed to different concentration of Arsenic in vitro (0.1–100 ppm) to study the toxicity level of arsenic. Modulation in stress enzymes and stress-related compounds were studied in relation to lipid peroxidase, catalase, super oxide dismutase (SOD), ascorbate peroxidase (APX), reduced glutathione and carotenoids in arsenic exposed biomass to understand the resistance mechanism of the genus both in laboratory condition as well as in natural condition. Arsenic content of cyanobacterial biomass from contaminated area was more (276.9 μg g−1) than laboratory exposed sample (37.17 μg g−1), indicating bioconcentration of arsenic in long-term-exposed natural biomass. Overall, more activity of catalase was recorded in cyanobacterial biomass of natural condition whereas SOD and APX were at higher level in laboratory culture.  相似文献   

13.
A transect of ten profiles was laid out in 20 m intervals on a tidal sand flat approximately 100 m from the east shore of Sylt until the next tideway was reached. Sediment samples were taken from 0–2 cm depth (oxic layer) and 2–4 cm depth (anoxic layer). The average content of organic carbon (C) was 2.41 mg g−1 in the oxic layer and 1.86 mg g−1 in the anoxic layer. The organic C content correlated positively with non-biomass C, 0.5M K2SO4 extractable C, total nitrogen (N), cation exchange capacity (CEC), and the textural classes <200 μm, and negatively correlated with the coarse sand fraction. The average total C:N ratio was 7.0 in the oxic layer and 6.7 in the anoxic layer, indicating that the C input comes entirely from the microflora. CHCl3-labile C was measured by the fumigation-extraction method and was converted to microbial biomass C (values in brackets). The average content of CHCl3-labile C was 407 μg g−1 (903 μg g−1) in the oxic layer and 214 μg g−1 (476 μg g−1) in the anoxic layer. CHCl3-labile C did not correlate with CEC and the textural classes <200 μm, indicating that conditions other than the physical environment determine this fraction (C input, grazing).  相似文献   

14.
The physiological function of glutamate dehydrogenase (GDH) was investigated by treating germinating peanut (Arachis hypogaea L.) seeds with nucleoside triphosphate (NTP) solutions in order to alter the isoenzyme distribution patterns. The free nucleosides and nucleotides of the GTP-treated peanut were the highest [8.7 μmol g−1(f.m.)], and they decreased through the ATP-treated peanut [5.8 μmol g−1(f.m.)], and CTP-treated peanut [5.5 μmol g−1(f.m.)], to the UTP-treated peanut [4.1 μmol g−1(f.m.)]. The combination of 4 NTPs induced 20 % higher content of Pi [173 nmol g−1(f.m.)] than in the control, but the combined ATP+UTP treatment induced the lowest (93.0 nmol g−1(f.m.)] Pi. The 4 NTP treatment also induced the highest number of GDH isoenzymes (28) followed by the purine NTP treatments (15 to 20), but the pyrimidine NTP treatments and the combined purine + pyrimidine NTP treatments induced the lowest numbers (<15) of isoenzymes. The deamination/amination ratios were generally higher in the UTP (0.11), and CTP (0.06) treated peanuts than in the GTP (0.04), and ATP (0.07) treated peanuts. There were mutual relationships between higher numbers of GDH isoenzymes present in the GTP-, and ATP-treated peanuts and higher RNA (236.5 and 239.4 μg g−1, respectively) contents on one hand, and between the lower numbers of isoenzymes in the CTP-, and UTP-treated peanuts and lower RNA (162.0 and 152.5 μg g−1, respectively) contents. The recurrent relationships of the effects of the NTP treatments of peanut were UTP > ATP > CTP > GTP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Algal communities inhabiting four calamine mine spoils differing in time since cessation of exploitation and loaded with high concentrations of zinc (20,284–61,599 μg g−1 soil DW), lead (2,620–3,885 μg g−1 DW) and cadmium (104–232 μg g−1 DW) were studied. In dump soils of slightly alkaline pH (7.28–7.52) and low nutrient (, , ) concentrations, chlorophyll a content ranged from 0.41 to 2.27 μg g−1 soil DW. In total, 23 algal species were recorded. Chlorophyta were the dominant taxonomic group (42–55% of all identified species) followed by Cyanobacteria (28–36%) and Heterokontophyta (13–21%). The highest species richness (18) was observed in the oldest dump (120 years old) with natural succession, while in younger dumps it was lower (11–15). Total algal abundance ranged between 5.5 and 19.1 × 102 ind. g−1 soil DW, and values of Margalef’s diversity indices (1.59–2.25) were low. These results may suggest that both high concentrations of heavy metals and low nutrient content influenced the algal communities in all the dumps studied. The differences in algal microflora observed between tailing dumps may indicate that habitat quality improved with time and that algae isolated from Zn/Pb-loaded soils may be Zn/Pb-resistant ecotypes of ubiquitous species.  相似文献   

16.
The results of analyses conducted to determine contents of Cd(II) and Pb(II) in mushrooms of mycorrhizal fungi and selected parts of birches growing in an industrial desert surrounding a nonferrous works are presented in this study. The fruiting bodies of fungi accumulated several times higher contents (up to 80 μg g−1 dry weight) of Cd(II) compared to those found in the soil (20 μg g−1 dry weight). In contrast, the mushroom contents of Pb(II) were only slightly increased (up to 895 μg g−1 dry weight) than those present in the soil (500 μg g−1 dry weight). However, fivefold higher concentrations of the metals were found in the mycorrhizal roots. Comparing the distribution of the metals analysed, the protective role of the ectomycorrhizae in relation to the host tree was indicated. Mycorrhizal fungi persistently fixed heavy metals, forming an efficient biological barrier that reduced movement of the metals in birch tissues.  相似文献   

17.
An ‘alternating solution’ culture method was used to study the effects of chloride ions and humic acid (HA) on the uptake of cadmium by barley plants. The plants were transferred periodically between a nutrient solution and a test solution containing one of four levels of HA (0, 190, 569 or 1710 μg cm−3) and one of five levels of Cd (0, 0.5, 1.0, 2.5 or 5.0 μg cm−3) in either a 0.006M NaNO3 or 0.006M NaCl medium. Harvest and analysis of shoots and roots was after nineteen days. The distribution of Cd in the test solutions between Cd2+, CdCl+ and HA-Cd was determined in a separate experiment by dialysis equilibrium. In the nitrate test solutions Cd uptake was clearly controlled by Cd2+ concentration and was therefore reduced by HA complex formation. In the absence of HA, chloride suppressed Cd uptake indicating that Cd2+ was the preferred species. However complex formation with Cl enhanced uptake when HA was present because of an increase in the concentration of inorganic Cd species relative to the nitrate system. The ratio root-Cd/shoot-Cd remained at about 10 across a wide range of shoot-Cd concentrations, from about 3 μg g−1 (sub-toxic) up to 85 μg g−1 (80% yield reduction). The ability of the barley plants to accumulate ‘non-toxic’ Cd in their roots was thus very limited. Humic acid also had no effect on Cd translocation within the plant and the root/shoot weight ratio did not vary with any treatment. At shoot-Cd concentrations in excess of 50 μg g−1, K, Ca, Cu and Zn uptake was reduced, probably the result of root damage rather than a specific ion antagonism. The highest concentration of HA also lowered Fe and Zn uptake and there was a toxic effect with increasing HA concentration at Cd=0. However the lowest HA level, comparable with concentrations found in mineral soil solutions, only reduced yield (in the absence of Cd) by <5% while lowering Cd uptake across the range of Cd concentrations by 66%–25%.  相似文献   

18.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

19.
Potentially poplars and willows may be used for the in situ decontamination of soils polluted with Cd, such as pasturelands fertilised with Cd-rich superphosphate fertiliser. Poplar (Kawa and Argyle) and willow (Tangoio) clones were grown in soils containing a range (0.6–60.6 μg g−1 dry soil) of Cd concentrations. The willow clone accumulated significantly more Cd (9–167 μg g−1 dry matter) than the two poplar clones (6–75 μg g−1), which themselves were not significantly different. Poplar trees (Beaupré) sampled in situ from a contaminated site near the town of Auby, Northern France, were also found to accumulate significant quantities (up to 209 μg g−1) of Cd. The addition of chelating agents (0.5 and 2 g kg−1 EDTA, 0.5 g kg−1 DTPA and 0.5 g kg−1NTA) to poplar (Kawa) clones caused a temporary increase in uptake of Cd. However, two of the chelating agents (2 g kg−1 EDTA and 0.5 g kg−1 NTA) also resulted in a significant reduction in growth, as well as abscission of leaves. If the results obtained in these pot experiments can be realised in the field, then a single crop of willows could remove over 100 years worth of fertiliser-induced Cd contamination from pasturelands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Coffee beans and tea leaves contain large amounts of potentially metal-chelating substances which could remain in the wastes after extraction by hot water. The following two experiments have been carried out: a) an incubation experiment with the objective of verify whether coffee grounds and green tea wastes could be used as an Fe chelating agent to increase Fe availability to plants in the soil; b) a pot experiment to verify the effect of those composts on the Fe content of the edible part of vegetables. Japanese leaf radish (Raphanus raphanus sp), whose the leaves are the edible part, was chosen as test plant. Calcareous subsoil (shell fossil soil) with original pH 9.3 and a B horizon of Andisol (Typic melanudand) with pH adjusted to 7.7 were used. For the incubation experiment, the treatments included of the direct addition of Fe at rates of 0 (control), 10, 20 and 40 μg g−1 dry soil as ferrous sulfate (FS); coffee waste compost (CWC) and tea waste compost (TWC). Both composts contained approximately 40 g Fe kg−1 dry mass. Thus, the total amounts of CWC and TWC added were of 0, 0.25, 0.5 and 1.0 mg g−1 soil. Considering a soil density of 1 g cm−3 and 10 cm of plow layer, the total amounts of compost applied were of 0, 0.25, 0.5 and 1.0 ton ha−1. Soil samples were collected after 30 and 60 days of incubation and then analyzed for plant available Fe. For the pot experiment, the doses of 0 (control) and 1 mg g−1 soil of CWC or TWC were used to grow radish. Plants were harvested after 60 days. For samples incubated for 30 days, the CWC and TWC treatments led to the largest increase in the ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA) extractable Fe levels of both soils (P < 0.05). After 60 days of incubation the amounts of AB-DTPA-extractable Fe in soil samples treated with both composts were always higher than in those treated with FS alone. For both soils, the application of 40 μg Fe g−1 dry soil as CWC or TWC enhanced significantly (P < 0.05) the total Fe content of radish shoots compared to the control. We concluded that it has been possible to increase the plant-available Fe in neutral to alkaline soils using coffee grounds and tea leaf wastes composted with FS. However, more research on the effectiveness in field conditions are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号