首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rats were cannulated in the major mesenteric lymph duct and given an intraduodenal bolus of unlabeled and alpha-[3H]tocopherol, and [14C]oleic acid in soybean oil. The appearance of alpha-tocopherol in lymph was negligible during the first 2 h and peaked 4-15 h after feeding, whereas no detectable amount was recovered in the portal vein. Intestinal absorption via the lymphatic pathway was 15.4 +/- 8.9% (n = 10) and 45.9 +/- 10.8% (n = 4) for alpha-tocopherol and [14C]oleic acid, respectively. About 99% of alpha-tocopherol in lymph was associated with the chylomicron fraction (d less than 1.006 g/ml). In non-fasting rats, 51% of serum alpha-tocopherol was associated with chylomicrons/VLDL (very-low-density lipoprotein, d less than 1.006 g/ml) and 47% with HDL (high-density lipoprotein, 1.05 less than d less than 1.21 g/ml). Our study revealed that the liver, skeletal muscle and adipose tissue contain approx. 92% of the total mass of alpha-tocopherol measured in ten different organs. Parenchymal and nonparenchymal liver cells contributed to 75% and 25% of the total mass of alpha-tocopherol in the liver, respectively.  相似文献   

2.
We have studied the effects of long-term administration of ethanol on the distribution and pharmacokinetics of alpha-tocopherol. In rats fed ethanol (35% of total energy) for 5-6 weeks concentration of alpha-tocopherol in whole liver was reduced by 25% as compared to the pair-fed controls (P less than 0.003). This reduction was significant in the parenchymal cells (28%, P less than 0.004), whereas no significant difference was observed for the nonparenchymal cells. Mitochondrial alpha-tocopherol content was reduced by 55% in the ethanol-treated rats as compared to the controls (P less than 0.002), whereas no significant difference was observed in microsomes, light mitochondria or cytosol. The serum levels of alpha-tocopherol showed no significant difference between the groups. When in vivo labeled chylomicron alpha-[3H]tocopherol was injected intravenously to anesthetized rats, we found a significant increase in serum half-life of alpha-tocopherol in the ethanol-treated group as compared to the controls (P less than 0.025). Hepatic alpha-[3H]tocopherol content was similar in the two groups 24 h after injection.  相似文献   

3.
beta-Migrating very-low-density lipoproteins (beta-VLDL) are cholesteryl-ester-enriched lipoproteins which accumulate in the serum of cholesterol-fed animals or patients with type III hyperlipoproteinemia. In the rat, beta-VLDL are rapidly cleared by the liver and parenchymal liver cells form the major site for uptake. In this investigation, beta-VLDL were labeled with [3H]cholesteryl esters and the hepatic intracellular transport of these esters was followed. 2 min after injection, the major part of the [3H]cholesteryl esters is already associated with the liver and a significant proportion is recovered in endosomes. Up to 25 min after injection, an increase in radioactivity in the lysosomal compartment is noticed. This radioactivity initially represents cholesteryl esters, while from 25 min onward, radioactivity is mainly present in unesterified cholesterol. Between 45 min and 90 min after beta-VLDL injection, specific transfer of unesterified [3H]cholesterol to the endoplasmic reticulum is observed, while by 3 h the majority is located in this fraction. The appearance of radioactivity in the bile was rather slow as compared to the rapid initial uptake and processing, and up to 5 h after injection only 10% of the injected dose had reached the bile (mainly as bile acids). 72 h after injection, the amount of the injected radioactivity recovered in the bile had increased to 50%. Chloroquine treatment of the rats inhibited the hydrolysis of the cholesteryl esters and the appearance of radioactivity in the bile was retarded. It is concluded that beta-VLDL are rapidly processed by parenchymal liver cells and that the cholesteryl esters from beta-VLDL are hydrolyzed in the lysosomal compartment. Unesterified cholesterol remains associated with the endoplasmic reticulum for a prolonged time, although ultimately the majority will be secreted into the bile as bile acids. The effective operation of this pathway will prevent extrahepatic accumulation of cholesteryl esters from beta-VLDL, while the prolonged residence time of unesterified cholesterol in the endoplasmic reticulum might be important for regulation of low-density lipoprotein (LDL) receptors in liver and thus for LDL levels in the blood.  相似文献   

4.
We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.  相似文献   

5.
Secretion of alpha-tocopherol from cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Primary cultures of rat hepatocytes and rat liver perfusions were used to study hepatic secretion of alpha-tocopherol. The secretion of alpha-tocopherol from hepatocytes in culture was linear with time for 4 h. Ultracentrifugation of the medium revealed that 89.4 +/- 2.1% of alpha-tocopherol secreted during 4 h incubation was associated with the very-low density lipoprotein fraction (VLDL, d less than 1.006 g/ml). Oleic acid had no significant effect on the secretory rate of alpha-tocopherol, whereas eicosapentaenoic acid reduced the amount of alpha-tocopherol secreted to 48.4 +/- 12.7% of the control value after 20 h incubation (P less than 0.01). Monensin, a known inhibitor of VLDL secretion, reduced the secretion of alpha-tocopherol to 14.1 +/- 4.3% of the control value (P less than 0.02). Colchicine and chloroquine inhibited the secretion of alpha-tocopherol in the same order of magnitude as monensin. Hepatic perfusion after intravenous injection of in vivo labeled alpha-[3H]tocopherol lymph, showed that about 75% of the secreted radioactivity was in the VLDL fraction. From these results we conclude that most alpha-tocopherol is secreted from the liver associated with nascent VLDL in rats.  相似文献   

6.
A model system consisting of donor membrane (egg lecithin liposomes) and acceptor membrane (human erythrocyte ghosts or rat liver mitochondria) were used to investigate the alpha-tocopherol binding protein (alpha TBP) mediated transfer of alpha-tocopherol. Liposomes containing RRR-[alpha-3H]tocopherol ([alpha-3H]T) were incubated with acceptor membrane at 37 degrees C for 0-45 min in the presence or absence of rat liver cytosol or a dialyzed 30-60% saturated ammonium sulfate precipitated fraction of rat liver cytosol (Fraction B). Erythrocyte ghosts and liver mitochondria were compared and found to behave similarly in the presence of Fraction B. alpha-Tocopherol transfer activity (alpha TTA) typically varied 0- to 27-fold greater than buffer blanks, depending upon type and concentration of protein preparation. Gel filtration of Fraction B yielded one alpha TTA peak (liver mitochondria as acceptor) with an estimated Mr of 39,000. [alpha-3H]T recovered from erythrocyte ghosts pellets by HPLC suggest that the [alpha-3H]T was transferred intact. alpha TTA of Fraction B in the presence of varying concentrations of erythrocyte ghosts and liposomal [alpha-3H]T followed saturation kinetics. Optimal concentrations gave alpha TTA responses directly proportional to rat liver cytosol concentration. alpha TTA was inhibited only 5% in the presence of a 32-fold excess of cold liposomal alpha-tocopheryl acetate suggesting that the free hydroxyl group on the chromanol ring of alpha-tocopherol is needed for transfer. Coefficient of variation of repeated measures of alpha TTA in rat liver cytosol was 2.9%. Thus, the intermembrane transfer phenomenon of alpha-tocopherol can be studied quantitatively and can be used to compare liver protein preparations exhibiting transfer activity.  相似文献   

7.
Utilization of stearic and lignoceric acids supplied by high-density lipoprotein (HDL) sphingomyelin to different tissues was followed for 24 h after rats were injected with HDL containing [[1-14C]stearic (18:0) or [1-14C]lignoceric (24:0) acid [Me-3H]choline]sphingomyelin. Both isotopes reached a maximum in tissue lipids 3-12 h after injection and were recovered mainly in the liver (30%) and small intestine (3%), whereas the other tissues contained approx. 1% or less of the injected dose. All the tissues were able to take up some intact sphingomyelin from HDL and hydrolyze it. In the lung and erythrocytes, the 3H:14C ratio of sphingomyelin remained unchanged throughout the studied period, while an increase in the isotopic ratio was observed in the kidney due to the 3H choline moiety re-used for synthesis of new sphingomyelin. Conversely, the isotopic ratio of sphingomyelin decreased in the liver, indicating a saving of the 14C-labelled fatty acids, especially 24:0. Furthermore, [24:0]ceramide in the liver remained at a high level (6% of the injected dose), whereas [18:0]ceramide decreased to 1%. When the tissues were examined 24 h after injection, the proportion of the 14C linked to sphingomyelin in the total 14C was always higher for both kinds of sphingomyelin than the molar proportion of sphingomyelin in the whole of lipid classes. However, in the majority of the extra-hepatic tissues, more [14C]18:0 than [14C]24:0 was recovered in sphingomyelin, and more 14C radioactivity from 18:0 than from 24:0 was redistributed in the other lipids. The choline moiety from both kinds of sphingomyelin was re-used to synthesize phosphatidylcholine, especially in the liver (up to 20% of the injected dose). All these results show that utilization of sphingomyelin from HDL by tissues normally occurs in vivo and that this phenomenon should be taken into account in the study of the phospholipid turnover of cell membranes. They also show that metabolism of sphingomyelin from HDL in the liver and other tissues is dependent on the sphingomyelin acyl moiety.  相似文献   

8.
1. Rats pretreated with Triton WR-1339 to prevent the formation of remnants were injected with [3H]cholesterol-labelled remnants, intact chylomicrons or chylomicrons depleted of most of their surface phospholipids by treatment with phospholipase A2. Within 5 min about 80% of the injected label of remnants and phospholipid-depleted chylomicrons was incorporated into the livers compared with less than 10% of the injected radioactivity of intact chylomicrons. A similar rapid hepatic uptake of radioactivity occurred when rats not pretreated with Triton were injected with [3H]cholesterol-labelled phospholipid-depleted chylomicrons. This rapid hepatic uptake of phospholipid-depleted chylomicrons occurred apparently without any alteration in the apoprotein composition of the particles. 2. The participation of hepatocytes in the uptake of remnants and phospholipid-depleted chylomicrons was examined. Both types of particles were taken up by the hepatocytes. However, small chylomicrons (Sf less than 400) were taken up more efficiently than were large chylomicrons (Sf greater than 400), but neither was taken up as efficiently as the remnants. 3. The results of this study lend support to the hypothesis that phospholipid-depleted chylomicrons and chylomicron remnants are taken up by the liver by a similar mechanism, which depends on the loss of surface phospholipids.  相似文献   

9.
The fate of cholesteryl esters of the serum lipoproteins was studied in intact rats and in isolated perfused rat livers. The lipoproteins of fasting rat serum were labeled in vitro with [3H]cholesteryl oleate. Following intravenous injection, it was found that the majority of the radioactive ester was rapidly taken up by the liver where hydrolysis of the ester bond occurred. At 5 min, 58% of the injected material was recovered in the liver, 85% of which was still in the ester form, while at 30 min only 22% of the liver radioactivity was in cholesteryl esters. There was very little difference in the rate at which radioactivity was taken up from the different lipoprotein classes. Similar phenomena were observed in the perfused liver, but it was found that although the radioactive esters were being taken up, there was no change in the concentrations of free or esterified cholesterol in the perfusing medium, indicating that the lipoprotein cholesteryl ester was gaining access to the liver through an exchange of molecules. After uptake, cell fractionation experiments showed that the plasma membranes had the greatest relative amounts of radioactivity, suggesting that this is the site of exchange. Small amounts of radioactivity were recovered in the bile, demonstrating that serum lipoproteins can serve as precursors of at least some of the bile steroids.  相似文献   

10.
Rat HDL containing [stearic acid-14C, (methyl-3H)choline]sphingomyelin was prepared by incubating labelled sphingomyelin liposomes with serum. HDL was then separated by ultracentrifugation and purified by gel-filtration chromatography. The maximum transfer was reached when 1.5 microliter sphingomyelin was incubated in the presence of 1 ml of serum at 37 degrees C for 1 h. When transfer was limited to a 5-7% increase in HDL mass, no significant change was observed in the HDL electrophoretic pattern, and rats could therefore be injected with this type of HDL under physiological conditions. Plasma radioactivity decay was followed for 24 h, and the recovery of both isotopes in 11 tissues was studied 24 h after the injection. The decay in plasma of both isotopes followed three exponential phases. During the first two phases, both isotopes disappeared with the same velocity (t1/2 = 12.8 and 98-105 min for the first and second phases, respectively). 10 h after injection, 3H had disappeared more slowly than 14C (t1/2 = 862 and 502 min for 3H and 14C, respectively) and 24 h after injection, only 1.5% of 14C and 2.5% of 3H remained in the plasma. This radioactivity was located mainly in HDL (80-85% for 3H and 14C), with a 3H/14C ratio close to that of injected sphingomyelin, and in VLDL, with the same isotopic ratio as that of liver lipids. Some 3H was associated with non-lipoprotein proteins. 17.5% of 3H and 23.4% of 14C were recovered in the liver, 1.6% of each isotope in erythrocytes, and 1.4% of 3H and 0.6% of 14C in kidney. Less than 1% of each isotope was recovered in each of the other tissues. Phosphatidylcholine was the lipid most labelled, and in several tissues sphingomyelin had a 3H/14C ratio close to that of injected sphingomyelin, showing an uptake without prior hydrolysis.  相似文献   

11.
Liver takes up retinol-binding protein from plasma   总被引:4,自引:0,他引:4  
Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared 125I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.  相似文献   

12.
The plasma clearance, tissue distribution and metabolism of hyaluronic acid were studied with a high average molecular weight [3H]acetyl-labelled hyaluronic acid synthesized in synovial cell cultures. After intravenous injection in the rabbit the label disappeared from the plasma with a half-life of 2.5--4.5 min, which corresponds to a normal hyaluronic acid clearance of approx. 10 mg/day per kg body weight. Injection of unlabelled hyaluronic acid 15 min after the tracer failed to reverse its absorption. Clearance of labelled polymer was retarded by prior injection of excess unlabelled hyaluronic acid. The maximum clearance capacity was estimated in these circumstances to be about 30 mg/day per kg body wt. The injected material was concentrated in the liver and spleen. As much as 88% of the label was absorbed by the liver, where it was found almost entirely in non-parenchymal cells. Degradation was rapid and complete, since volatile material, presumably 3H2O, appeared in the plasma within 20 min. Undegraded [3H]hyaluronic acid, small labelled residues and 3H2O were detected in the liver, but there was little evidence of intermediate oligosaccharides. No metabolite except 3H2O was recognized in plasma or urine. Two-thirds of the radioactivity was retained in the body water 24 h later, and small amounts were found in liver lipids. Radioactivity did not decline in the spleen as rapidly as in the liver. The upper molecular weight limit for renal excretion was about 25 000. Renal excretion played a negligible part in clearance. It is concluded that hyaluronic acid is removed from the plasma and degraded quickly by an efficient extrarenal system with a high reserve capacity, sited mainly in the liver.  相似文献   

13.
1. Pig heart cytosolic malate dehydrogenase was radiolabelled with O-(4-diazo-3,5-di-[125I]iodobenzoyl)sucrose and intravenously injected into rats. Enzyme activity and radioactivity were cleared from plasma identically, with first-order kinetics, with a half-life of about 30 min. 2. The tissue distribution of radioactivity was determined at 2 h after injection. All injected radioactivity was recovered from the tissues. A high percentage of the injected dose was found in liver (37%), spleen (6%) and bone including marrow (19%). 3. Radioactivity in liver and spleen increased up to 2 h after injection and subsequently declined, with a half-life of about 20 h. 4. After differential fractionation of liver, radioactivity was largely found in the mitochondrial and lysosomal fraction. 5. Liver cells were isolated 1 h after injection of labelled enzyme. We found that Kupffer cells, endothelial cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 2725, 94 and 63 ml of plasma/day per g of cell protein respectively. 6. Radioautography indicated that in spleen and bone marrow the enzyme is mainly taken up by macrophages. 7. Internalization of the enzyme by liver, spleen and bone marrow was saturable. This indicates that the enzyme is taken up in these tissues by adsorptive endocytosis. 8. The present results closely resemble those obtained previously for the mitochondrial isoenzyme of malate dehydrogenase and for lactate dehydrogenase M4. Since those enzymes are positively charged at physiological pH, whereas cytosolic malate dehydrogenase is negative, net charge cannot be the major factor determining the rate of uptake of circulating enzymes by reticuloendothelial macrophages, as has been suggested in the literature [Wachsmuth & Klingmüller (1978) J. Reticuloendothel. Soc. 24, 227-241].  相似文献   

14.
3H-labelled metabolites were determined in the perchloric acid-soluble fraction of blood plasma and liver of adult male Wistar rats, following the application of [5 - 3H]uridine. Ten minutes after the injection of uridine, only 20% of the total 3H activity of the plasma could be attributed to [3H]uridine. The remaining radioactivity was found chiefly in [3H]uracil (40%) and 3H2O (20%). In the liver, at 10 min, [3H]-uridine and [3H]uracil together accounted for less than 0.5% of the total radioactivity; about 70% of the radioactivity was due to [3H]beta-alanine, and 15% to 3H2O. 45 min after the injection, 70% of the radioactivity in the plasma was due to 3H2O, whereas uridine and uracil represented about 4% and 6%, respectively. At this time, about 55% of the radioactivity in the liver was due to [3H]beta-alanine, about 40% to 3H2O, and about 5% to unidentified metabolites; [3H]uridine and [3H]uracil were not observed. A comparison of the rate of catabolism of [5-3H]-uridine, [5-3H]cytidine and [6-3H]thymidine showed that cytidine is degraded in the organism 25 times more slowly than uridine or thymidine. The biological half lives for the total degradation of the [3H]nucleosides to 3H2O, based on the values in the plasma, were: uridine 1.1 h; thymidine 1.3 h; cytidine 25 h. Furthermore, the turnover time of exogenous uridine in the plasma was found to be 9 min, which gives a half life of 6 min for the metabolism of exogenous uridine to uracil.  相似文献   

15.
[3H]Triacylglycerol-labelled chylomicrons were isolated from intestinal lymph, obtained from rats made hypolipidaemic by treatment with pharmacological amounts of 17 alpha-ethynyloestradiol. Oestrogen treatment results in a large reduction in the content of apolipoproteins (apo) E and C of lymph chylomicrons. Upon incubation in vitro with freshly isolated parenchymal and non-parenchymal cells the apo E-, apo C-poor chylomicrons became readily cell-associated. With increasing chylomicron concentrations this cell-association was saturable and half-maximal cell-association was achieved at about 0.55 mg of triacylglycerol/ml. The cell-association was time- and temperature-dependent. A more than 90% inhibition of the cell-association of the [3H]triacylglycerol moiety was observed with both parenchymal and non-parenchymal cells when pure apo C-III (12.6 micrograms/mg of triacylglycerol) was incorporated into the chylomicrons. These data indicate that apo E-, apo C-poor chylomicrons are bound to both parenchymal and non-parenchymal liver cells at a high-affinity site of limited capacity and that binding to this site is strongly inhibited by apo C-III. With apo C-III-enriched chylomicrons simultaneous determination of the cell-association of the 125I-apo C-III and the [3H]triacylglycerol moiety indicated that more 125I-apo C-III becomes associated to the cells than expected on the basis of [3H]triacylglycerol radioactivity measurements. It is suggested that upon cell-association of apo C-III its binding to the chylomicron particles is lost. Consequently the occupation of the cellular recognition site by apo C-III prevents further chylomicron binding and thus leads to a decrease of the cell-association level of the [3H]triacylglycerol moiety. Apo E enrichment of the chylomicrons led to an increased cell-association rate with parenchymal cells and to a marked increase of the cell-association level with non-parenchymal cells. The cell-association of the apo E radioactivity followed closely the [3H]triacylglycerol radioactivity, indicating that the particle-apo E complex is bound as a unity. The apo E effects were opposed by apo C-III. With apo E-, apo C-III-enriched chylomicrons more 125I-apo E became associated with the cells than could be expected on the basis of the [3H]triacylglycerol measurements. It is concluded that apo C-III can weaken the interaction of apo E with the chylomicrons leading to the cell-association of free apo E. It appears that subtle changes in the apo E and/or apo C-III content of chylomicrons can influence the interaction with both parenchymal and non-parenchymal liver cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
For passive targeting of liposomes to tumor tissues, we earlier developed reticuloendothelial system (RES)-avoiding liposomes modified with a uronic acid derivative, palmityl-D-glucuronide (PGlcUA) (Namba, Y., Sakakibara, T., Masada, M., Ito, F. and Oku, N. (1990) Chem. Pharm. Bull. 38, 1663-1666). In this present study, we examined the blood clearance and biodistribution of PGlcUA-liposomes (dipalmitoylphosphatidylcholine/cholesterol/PGlcUA = 40:40:20 as a molar ratio) in normal and tumor-bearing mice. Liposomes containing dipalmitoylphosphatidylglycerol (DPPG) instead of PGlcUA was also examined as a control. When [3H]inulin-encapsulated PGlcUA-liposomes and DPPG-liposomes were intravenously injected into normal mice, approx. 50% of the 3H radioactivity was recovered from the liver, the bulk of RES, at 12 h after administration of DPPG-liposomes, while only approx. 20% of it was found there when PGlcUA-liposomes were administered. Radioactivity remaining in the plasma at 12 h after injection was 5-fold higher when PGlcUA-liposomes were injected than when DPPG-liposomes were used. Biodistribution of liposomes in tumor-bearing mice was also examined. Mice were inoculated with 10(7) S180 cells into the hind leg. After 1 week, liposomes were injected. Radioactivity of [3H]inulin originally encapsulated in the PGlcUA-liposomes accumulated in the tumor to an extent 3-4-fold higher than that of the marker in DPPG-liposomes. Liver/tumor ratio of the radioactivity was 12 for DPPG-liposomes and only 2 for PGlcUA-liposomes. This latter value is the lowest of various liposome formulations ever reported.  相似文献   

17.
We have studied the hepatic uptake of human [14C] cholesteryl oleate labeled acetyl low density lipoprotein (LDL). Acetyl-LDL injected intravenously into rats was cleared from the blood with a half-life of about 10 min. About 80% of the injected acetyl-LDL was recovered in the liver after 1 h. Initially, most of the [14C]cholesterol was recovered in liver endothelial cells (about 60%). Some radioactivity (about 15%) was also recovered in the hepatocytes, while the Kupffer cells and stellate cells contained only small amounts of the label (less than 5%). About 1 h after injection, radioactivity started to disappear from endothelial cells and appeared instead in hepatocytes. Radioactivity subsequently declined in hepatocytes as well. After a lag phase of 4 h, significant amounts of radioactivity were recovered in bile. The in vitro uptake and hydrolysis of [14C]cholesteryl oleate-labeled acetyl-LDL were saturable in isolated rat liver endothelial cells. Native LDL does neither affect the uptake nor the hydrolysis of acetyl-LDL. Ammonia and monensin reduced the hydrolysis of acetyl-LDL in isolated liver endothelial cells. Furthermore, monensin at concentrations above 10 microM completely blocked the binding of acetyl-LDL to the liver endothelial cells, suggesting that the receptor for acetyl-LDL is trapped inside the cells. The liver endothelial cells may be involved in the protection against atherogenic lipoproteins, e.g. liver endothelial cells may mediate uptake of cholesterol from plasma and transfer of cholesterol to the hepatocytes for further secretion into the bile.  相似文献   

18.
beta-Phenylethylamine (PE) hydrochloride injected intraperitoneally into rats was distributed evenly throughout the various regions of rat brain. Similarly, when a mixture of PE and alpha, alpha, beta, beta-deuterated PE [( 2H4]PE) was injected, no regional differences were observed in the ratios of the amounts of [2H4]PE and PE present; however, significantly more [2H4]PE than PE was present, although a 1:1 mixture had been administered. Further experiments in which the amounts of [2H4]PE and PE in whole rat brain, liver, and plasma were quantified confirmed this finding. The maximum [2H4]PE-to-PE ratios observed were 67 in whole brain 1 h after injection and 8 in liver and in plasma 45 min after injection. The whole brain [2H4]PE-to-PE ratios were decreased by pargyline pretreatment. Subsequent experiments showed that more alpha, alpha-[2H2]PE than PE was present in whole brain, liver, and plasma of rats injected with an equimolar mixture of alpha, alpha-[2H2]PE and PE. In contrast, beta, beta-[2H2]PE was not enriched in comparison to PE under the same experimental conditions. We concluded that the basis for the enrichment of [2H4]PE and alpha, alpha-[2H2]PE compared to PE was due to protection of the deuterated analogs from the actions of monoamine oxidase and perhaps aldehyde dehydrogenase; this protection led to pronounced deuterium substitution effects in vivo especially in the brain.  相似文献   

19.
Metabolism of chylomicron arachidonic and linoleic acid in the rat   总被引:1,自引:0,他引:1  
Chyle and chylomicrons, obtained after feeding thoracic duct cannulated rats [3H]arachidonic (20:4) and [14C]linoleic acid (18:2) in cream, were injected i.v. into recipient animals. 7.5-15 min after injection, the 14C/3H ratio of the triacylglycerols remaining in plasma was about half of that in the injected chylomicrons, indicating that the chylomicron remnants formed retained relatively more [3H]20:4 than [14C]18:2. The 14C/3H ratio of plasma diacylglycerols was about 6-fold lower than that of plasma free fatty acids. The proportion of [3H]20:4 found in plasma cholesteryl esters was several-fold higher than that of [14C]18:2. Inhibition of hepatic lipase by a specific antiserum did not significantly influence the clearance of triacylglycerols, but increased the amount of 3H in plasma diacylglycerols. It also prevented the rapid clearance of phosphatidylethanolamine from plasma. The liver uptake of [3H]20:4 exceeded that of [14C]18:2. Antiserum against hepatic lipase diminished the difference. In contrast, the 14C/3H ratio of adipose tissue was higher than that of the injected chyle lipoproteins.  相似文献   

20.
Adult male rats, under starving and normal conditions, were injected intravenously with N-acetyl[3H]mannosamine and after various time intervals the specific radioactivities of free N-acetylneuraminic acid (NeuAc) and CMP-N-acetylneuraminic acid were determined in the liver. The specific radioactivity of free NeuAc was high even within 20s after injection; the maximum was reached between 7 and 10 min. The specific radioactivity of CMP-NeuAc showed a lag phase of approx. 1 min. Thereafter it increased quickly and rose above the specific radioactivity of free NeuAc, reaching a maximum about 20 min after injection. These results point to a channelling of the newly synthesized NeuAc molecules into a special compartment, from which they are preferentially used by the enzyme CMP-sialic acid synthetase. It is suggested that the cytosolic enzyme N-acetylneuraminic acid 9-phosphate phosphatase is working in concert with the nuclear localized enzyme CMP-N-acetylneuraminic acid synthetase. Incorporation of radioactive sialic acid into sialoglycoproteins in liver occurred 2 min after injection, and after 10 min bound radioactivity began to appear in the circulation, indicating a transport time of 8 min of sialoglycoproteins from the point of attachment of sialic acid to the point of excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号