首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nuclear magnetic resonance structure of the globular domain with residues 121-230 of a variant human prion protein with two disulfide bonds, hPrP(M166C/E221C), shows the same global fold as wild-type hPrP(121-230). It contains three alpha-helices of residues 144-154, 173-194 and 200-228, an anti-parallel beta-sheet of residues 128-131 and 161-164, and the disulfides Cys166-Cys221 and Cys179-Cys214. The engineered extra disulfide bond in the presumed "protein X"-binding site is accommodated with slight, strictly localized conformational changes. High compatibility of hPrP with insertion of a second disulfide bridge in the protein X epitope was further substantiated by model calculations with additional variant structures. The ease with which the hPrP structure can accommodate a variety of locations for a second disulfide bond within the presumed protein X-binding epitope suggests a functional role for the extensive perturbation by a natural second disulfide bond of the corresponding region in the human doppel protein.  相似文献   

2.
Stomoxyn and spinigerin belong to the class of linear cysteine-free insect antimicrobial peptides that kill a range of microorganisms, parasites, and some viruses but without any lytic activity against mammalian erythrocytes. Stomoxyn is localized in the gut epithelium of the nonvector stable fly that is sympatric with the trypanosome vector tsetse fly. Spinigerin is stored and secreted by hemocytes from the fungus-growing termite. The structure of synthetic stomoxyn and spinigerin in aqueous solution and in TFE/water mixtures was analyzed by CD and NMR spectroscopy combined with molecular modeling calculations. Stomoxyn and spinigerin adopt a flexible random coil structure in water while both assume a stable helical structure in the presence of TFE. In 50% TFE, the structure of stomoxyn is typical of cecropins, including an amphipathic helix at the N-terminus and a hydrophobic C-terminus with helical features that probably fold in a helical conformation at higher TFE concentration. In contrast to stomoxyn, spinigerin acquires very rapidly a helical conformation. In 10% TFE the helix is highly bent and the structure is poorly defined. In 50% TFE, the helical structure is well defined all along its sequence, and the slightly bent alpha-helix displays an amphiphilic character, as observed for magainin 2. The structural similarities between stomoxyn and cecropin A from Hyalophora cecropia and between spinigerin and magainin 2 suggest a similar mode of action on the bacterial membranes of both pairs of peptides. Our results also confirm that TFE induces helix formation and propagation for amino acids showing helical propensity in water but also enhances the helix propagation propensity of nonpolar beta-branched residues.  相似文献   

3.
We report the synthesis of bombyxin-IV, a disulfide-linked, heterodimeric, insulin superfamily peptide from the silkworm,Bombyx mori. The two chains (A- and B-chains) were synthesized separately by the solid-phase method using fluoren-9-ylmethoxycarbonyl (Fmoc) group as a protecting group for -amino group. Three disulfide bonds were bridged step by step (A6–A11, A20–B22, and A7–B10) in a good yield. Synthetic bombyxin-IV was identical with natural one with regard to the retention time on a reversed-phase column and the molecular weight measured by mass spectrometry. Circular dichroism (CD) spectrum of the synthetic bombyxin-IV was very similar to that of the natural one. The specific activity of synthetic bombyxin-IV is equal to that of natural one (0.1 ng/Samia unit). These results suggest that the synthetic bombyxin-IV has the tertiary structure identical with the natural peptide. Our method developed for synthesis of bombyxin-IV would be generally applicable to the synthesis of insulin-like heterodimeric peptides.  相似文献   

4.
The NMR solution structure of a highly stable coiled-coil IAAL-E3/K3 has been solved. The E3/K3 coiled-coil is a 42-residue de novo designed coiled-coil comprising three heptad repeats per subunit, stabilized by hydrophobic contacts within the core and electrostatic interactions at the interface crossing the hydrophobic core which direct heterodimer formation. This E3/K3 domain has previously been shown to have high alpha-helical content as well as possessing a low dissociation constant (70 nM). The E3/K3 structure is completely alpha-helical and is an archetypical coiled-coil in solution, as determined using a combination of (1)H-NOE and homology based structural restraints. This structure provides a structural framework for visualizing the important interactions for stability and specificity, which are key to protein engineering applications such as affinity purification and de novo design.  相似文献   

5.
The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.  相似文献   

6.
Here we determined NMR solution structures of two mutants of bovine pancreatic trypsin inhibitor (BPTI) to reveal structural reasons of their decreased thermodynamic stability. A point mutation, A16V, in the solvent-exposed loop destabilizes the protein by 20 degrees C, in contrast to marginal destabilization observed for G, S, R, L or W mutants. In the second mutant introduction of eight alanine residues at proteinase-contacting sites (residues 11, 13, 17, 18, 19, 34, 37 and 39) provides a protein that denatures at a temperature about 30 degrees C higher than expected from additive behavior of individual mutations. In order to efficiently determine structures of these variants, we applied a procedure that allows us to share data between regions unaffected by mutation(s). NOAH/DYANA and CNS programs were used for a rapid assignment of NOESY cross-peaks, structure calculations and refinement. The solution structure of the A16V mutant reveals no conformational change within the molecule, but shows close contacts between V16, I18 and G36/G37. Thus, the observed 4.3kcal/mol decrease of stability results from a strained local conformation of these residues caused by introduction of a beta-branched Val side-chain. Contrary to the A16V mutation, introduction of eight alanine residues produces significant conformational changes, manifested in over a 9A shift of the Y35 side-chain. This structural rearrangement provides about 6kcal/mol non-additive stabilization energy, compared to the mutant in which G37 and R39 are not mutated to alanine residues.  相似文献   

7.
The need for molecules with high specificity against noxious insects leads the search towards spider venoms that have evolved highly selective toxins for insect preys. In this respect, spiders as a highly diversified group of almost exclusive insect predators appear to possess infinite potential for the discovery of novel insect‐selective toxins. In 2003, a group of toxins was isolated from the spider Macrothele gigas and the amino acid sequence was reported. We obtained, by molecular biology techniques in a heterologous system, one of these toxins. Purification process was optimized by chromatographic methods to determine the three‐dimensional structure by nuclear magnetic resonance in solution, and, finally, their biological activity was tested. rMagi3 resulted to be a specific insect toxin with no effect on mice.  相似文献   

8.
We report the recombinant preparation from Escherichia coli cells of samples of two closely related, small, secreted cysteine‐rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well‐resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, and in vivo root growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N‐terminal His‐tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with 15N and 13C for NMR analysis and obtained near complete 1H, 13C, and 15N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges.  相似文献   

9.
The caerin 1 peptides are among the most powerful of the broad-spectrum antibiotic amphibian peptides. Caerin 1.1 has previously been shown to form an amphipathic helix-bend-helix structure in aqueous trifluoroethanol (H. Wong, J. H. Bowie, and J. A. Carver European Journal Biochemistry, 1997, Vol. 247, pp. 545-557) and structure-activity relationship studies indicate that both helices are required for activity, as well as flexibility in the bend region connecting the two. The structure of caerin 1.1 in dodecylphosphocholine micelles was investigated and shown to be very similar to that determined in aqueous trifluoroethanol. Caerin 1.4, which is identical to caerin 1.1, but with serine residues replacing Val5 and Gly7, is less active than caerin 1.1 against most bacterial species but has improved activity against Escherichia coli and Micrococcus luteus. The solution NMR structure of caerin 1.4 was determined in both aqueous trifluoroethanol and dodecylphosphocholine micelles, and was shown to be similar to caerin 1.1. It was concluded that differences in the hydrophobicity and hydrophilic angle of the first helix are probably responsible for the different spectra of antibacterial activity. The similarity of the structures calculated in aqueous trifluoroethanol and dodecylphosphocholine micelles suggests that, for caerin 1.1 and 1.4, these solvent systems are equally as good at representing a membrane environment.  相似文献   

10.
Summary The NMR solution structure of the activation domain isolated from porcine procarboxypeptidase B is compared with the X-ray crystal structure of the corresponding segment in the intact proenzyme. For the region of the polypeptide chain that has a well-defined three-dimensional structure in solution, i.e., the backbone atoms of residues 11–76 and 25 amino acid side chains in this segment that form a hydrophobic core in the activation domain, the root-mean-square distance between the two structures is 1.1 Å. There are no significant differences in average atom positions between the two structures, but only the NMR structure shows increased structural disorder in three outlying loops located along the same edge of the activation domain. These regions of increased structural disorder in the free domain coincide only partially with the interface to the enzyme domain in the proenzyme.  相似文献   

11.
We have determined, at high resolution, the NMR solution structure of an oxaliplatin-GG DNA dodecamer in the AGGC sequence context by 2D NMR studies. Homonuclear assignment strategies resulted in unambiguous assignment of 203 out of 249 protons, which corresponds to assignment of approximately 81% of the protons. Assignments of H5' and H5" protons were tentative due to resonance overlap. The structure of the oxaliplatin duplex was calculated using the program CNS with a simulated annealing protocol. A total of 510 experimental restraints were employed in the structure calculation. Of 20 calculated structures, the 15 with the lowest energy were accepted as a family. The RMSD of the 15 lowest energy structures was 0.68 A, indicating good structural convergence. The theoretical NOESY spectrum obtained by back-calculation from the final average structure showed excellent agreement with the experimental data, indicating that the final structure was in good agreement with the experimental NMR data. Significant conformational differences were observed between the oxaliplatin-GG 12-mer DNA we studied and all previous solution structures of cisplatin-GG DNA duplexes. For example, the oxaliplatin-GG adduct shows much less distortion at the AG base-pair step than the cisplatin-GG adducts. In addition, the oxaliplatin-GG structure also has a narrow minor groove and an overall axis bend of about 31 degrees, both of which are very different from the recent NMR structures for the cisplatin-GG adducts. These structural differences may explain some of the biological differences between oxaliplatin- and cisplatin-GG adducts.  相似文献   

12.
A hierarchical methodology for ab initio structure prediction is extended to treat oligomeric proteins. Modifications are made to a united-residue (UNRES) force field and a Conformational Space Annealing (CSA) global search method. The computational cost of including additional chains and the increase in speed from symmetry optimizations are evaluated. The native structures of two oligomeric proteins from the CASP3 exercise, the retro-GCN4 leucine zipper and the synthetic domain-swapped dimer, were identified as the lowest-energy families resulting from the search of the proteins when rotational symmetry was imposed. Additional searches in different symmetries and oligomerization states were carried out, and the results indicate some problems in the thoroughness of the search and in the search of packing arrangements if symmetry constraints are not imposed.  相似文献   

13.
The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13C-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered -helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical -turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.  相似文献   

14.
Protein function elucidation often relies heavily on amino acid sequence analysis and other bioinformatics approaches. The reliance is extended to structure homology modeling for ligand docking and protein–protein interaction mapping. However, sequence analysis of RPA3313 exposes a large, unannotated class of hypothetical proteins mostly from the Rhizobiales order. In the absence of sequence and structure information, further functional elucidation of this class of proteins has been significantly hindered. A high quality NMR structure of RPA3313 reveals that the protein forms a novel split ββαβ fold with a conserved ligand binding pocket between the first β‐strand and the N‐terminus of the α‐helix. Conserved residue analysis and protein–protein interaction prediction analyses reveal multiple protein binding sites and conserved functional residues. Results of a mass spectrometry proteomic analysis strongly point toward interaction with the ribosome and its subunits. The combined structural and proteomic analyses suggest that RPA3313 by itself or in a larger complex may assist in the transportation of substrates to or from the ribosome for further processing. Proteins 2016; 85:93–102. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Gramicidin S (GS) is a cyclo‐decapeptide antibiotic isolated from Bacillus brevis. The structural studies have shown that GS forms a two‐stranded antiparallel β‐sheet imposed by two II′ β‐turns. Despite its wide Gram+ and Gram? antimicrobial spectrum, GS is useless in therapy because of its high hemotoxicity in humans. It was found, however, that the analogues of GS‐14 (GS with 14 amino acid residues) attained a better antimicrobial selectivity when their amphipatic moments were perturbed. In this study, we report effects of similar perturbations imposed on GS cyclo‐decapeptide analogues. Having solved their structures by NMR/molecular dynamics and having tested their activities/selectivities, we have concluded that the idea of perturbation of the amphipatic moment does not work for GS‐10_0 analogues. An innovative approach to the synthesis of head‐to‐tail cyclopeptides was used. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Comparative studies based on x-ray crystallography and NMR spectroscopy were used for structural characterization of the novel minor, imidazolidinone moiety containing, product 2b of the Maillard reaction obtained in vitro by using the galactose-modified endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) 1. The x-ray analysis uniquely defined the molecular structure as cyclo-(N-(12-[-4)-D-galacto-pentitol-1-yl]-4-(4-hydroxybenzyl)-5-oxoimidazolidin-1-yl-(1 --> O]acetyl]glycyl-L-phenylalanyl-L-leucyl-] (3), having an 18-membered ring with an ester bond between the secondary (C4') hydroxyl group of a D-galacto-pentitolyl residue and the C-terminal carboxy group of leucine-enkephalin. The absolute configuration of the new chiral centre at the imidazolidinone moiety was established as C2(S), indicating a cis arrangement of C2 and C4 substituents at the 5-membered heterocyclic ring. The NMR analysis of compound 2b carried out in CH3CN-d3 and DMSO-d6, indicated the existence of two isomers in solution, differing only in the position of the ester group in the molecule. NMR data for the minor isomer (13%-16%) are in agreement with structure 3. The migratory tendency of the peptidyl group from the primary (2b) to the secondary hydroxyl group (3) of a D-galacto-pentitolyl residue in methanol/water solution was confirmed by RP HPLC analysis.  相似文献   

17.
NMR solution structure of the non-RGD disintegrin obtustatin   总被引:2,自引:0,他引:2  
The solution structure of obtustatin, a novel non-RGD disintegrin of 41 residues isolated from Vipera lebetina obtusa venom, and a potent and selective inhibitor of the adhesion of integrin alpha(1)beta(1) to collagen IV, has been determined by two-dimensional nuclear magnetic resonance. Almost the whole set of chemical shifts for 1H, 13C and 15N were assigned at natural abundance from 2D homonuclear and heteronuclear 500 MHz, 600 MHz and 800 MHz spectra at pH 3.0 recorded at 298 K and 303 K. Final structural constraints consisted of 302 non-redundant NOE (95 long-range, 60 medium, 91 sequential and 56 intra-residue), four disulfide bond distances, five chi1 dihedral angles and four hydrogen bonds. The 20 conformers with lowest total energy had no NOE violations greater than 0.35A or dihedral angle violations greater than 12 degrees. The average root-mean-square deviation (RMSD) for backbone atoms of all residues among the 20 conformers was 1.1A and 0.6A for the 29 best-defined residues. Obtustatin lacks any secondary structure. Compared to all known disintegrin structures in which the RGD motif is located at the apex of an 11 residue hairpin loop, the active KTS tripeptide of obtustatin is oriented towards a side of its nine residue integrin-binding loop. The C-terminal tail is near to the active loop, and these two structural elements display the largest atomic displacements due to local conformational disorder. Double cross-peaks for W20, Y28 and H27 in the aromatic region of TOCSY spectra, local RMSD values for these residues, and positive cross-peaks in a ROESY spectrum (600 MHz, 100 ms mixing time), suggest that these residues act as a hinge allowing for the overall flexibility of the entire integrin-binding loop. These distinct structural features, along with its different electrostatic surface potential in relation to other known disintegrins, may confer to obtustatin its reported alpha(1)beta(1) integrin inhibitory selectivity.  相似文献   

18.
The three-dimensional structure of the 56 residue polypeptide Apis mellifera chymotrypsin/cathepsin G inhibitor 1 (AMCI-1) isolated from honey bee hemolymph was calculated based on 730 experimental NMR restraints. It consists of two approximately perpendicular beta-sheets, several turns, and a long exposed loop that includes the protease binding site. The lack of extensive secondary structure features or hydrophobic core is compensated by the presence of five disulfide bridges that stabilize both the protein scaffold and the binding loop segment. A detailed analysis of the protease binding loop conformation reveals that it is similar to those found in other canonical serine protease inhibitors. The AMCI-1 structure exhibits a common fold with a novel family of inhibitors from the intestinal parasitic worm Ascaris suum. The pH-induced conformational changes in the binding loop region observed in the Ascaris inhibitor ATI are absent in AMCI-1. Similar binding site sequences and structures strongly suggest that the lack of the conformational change can be attributed to a Glu-->Gln substitution at the P1' position in AMCI-1, compared to ATI. Analysis of amide proton temperature coefficients shows very good correlation with the presence of hydrogen bond donors in the calculated AMCI-1 structure.  相似文献   

19.
Conformational studies of nociceptin (NC-NH2), its fully active fragment, NC(1-13)-NH2, and two significantly less potent fragments, NC(1-13)-OH and NC(1-11)-OH, were conducted in water and TFE solutions by the employment of circular dichroism, and in DMSO-d6 by 2DNMR spectroscopy in conjunction with theoretical conformational analysis. The conformations of all thepeptides studied were calculated taking two approaches. The first assumes multiconformational equilibrium of the peptide studied, which is characterized by a set of conformations (and their statistical weight values)obtained from a global conformational analysis using three methods: the electrostatically driven Monte-Carlo (EDMC) with the ECEPP/3 force field, the simulated annealing (SA) protocols in the AMBER and CHARMM force fields. The second approach incorporates the interproton distance and dihedral angle constraints into the starting conformation. Calculations were performed using the distance geometry and SA protocol in the CHARMM force field implemented in the X-PLOR program. The CD experiments indicated that for the active peptides, hydrophobic solvents induced a significantly higher (compared with those remaining)content order, probably a helical structure. Unfortunately, as a result of the conformational flexibility of thepeptides, the analysis of conformations obtained with both approaches and different force fields did not alllow the selection of any structural elements of the NC peptides that might be connected with their bioactivity. The only common element found in most conformations of the active peptides was a helical character of fragment 8-13, which allowed the side chains of basic amino acid residues to be exposed to the outside of the molecule and probably to interact with the ORL1 receptor.  相似文献   

20.
Wang CC  Chen JH  Yin SH  Chuang WJ 《Proteins》2006,64(1):219-226
Different programs and methods were employed to superimpose protein structures, using members of four very different protein families as test subjects, and the results of these efforts were compared. Algorithms based on human identification of key amino acid residues on which to base the superpositions were nearly always more successful than programs that used automated techniques to identify key residues. Among those programs automatically identifying key residues, MASS could not superimpose all members of some families, but was very efficient with other families. MODELLER, MultiProt, and STAMP had varying levels of success. A genetic algorithm program written for this project did not improve superpositions when results from neighbor-joining and pseudostar algorithms were used as its starting cases, but it always improved superpositions obained by MODELLER and STAMP. A program entitled PyMSS is presented that includes three superposition algorithms featuring human interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号