首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coexistence of inverted Y, chromosome 15p+ and abnormal phenotype.   总被引:3,自引:0,他引:3  
In this study, we report conventional and molecular cytogenetic studies in a patient with multiple anomalies who is a carrier of a pericentric inversion on chromosome Y and a chromosome 15p+. His parents were phenotypically normal. The father is a carrier of a pericentric inversion of chromosome Y, and the mother carries a large chromosome 15p+ variant. The inverted Y chromosome was demonstrated by GTG- and CBG-banding, and DAPI-staining. The presence of extra chromosomal material on the chromosome 15p, that was C-band and DAPI positive, was demonstrated by trypsin G-banding. This suggests that the extra chromosomal material contained repetitive DNA sequences. NOR-staining indicated the presence a nuclear organizer region at the junction of the chromosome 15p+ material. Fluorescence in situ hybridization (FISH), with chromosome X and Y painting probes, alpha- and classic-satellite probes specific for chromosome Y, alpha- and beta-satellite III probes for chromosome 15 were used to elucidate the nature of both the inverted Y chromosome and chromosome 15p+. The result with chromosome X and Y painting probes, alpha-satellite, classic-satellite, and DYS59 probes specific for chromosome Y revealed the rearrangement of the Y chromosome was an inv(Y)(p11.2q11.22 or q11.23). FISH with alpha-satellite and beta-satellite III probes for chromosome 15 demonstrated that the extra chromosomal material on the chromosome 15 probably represents beta-satellite III sequences. The possible roles of the simultaneous occurrence of an inverted Y and the amplified DNA sequence on chromosome 15p in the abnormal phenotype of the proband are discussed.  相似文献   

2.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

3.
Summary A very small sex chromosome was identified prenatally as a Y chromosome by using molecular hybridization in conjunction with conventional cytogenetics techniques. The combination of R-banding, Q-banding, distamycin-DAPI staining suggested that the chromosome might be a de novo deletion of the Y chromosome as the father's Y chromosome was normal. Restriction enzyme analysis of amniotic fluid cell DNA using a Y chromosome repetitive probe confirmed the origin of this chromosome.  相似文献   

4.
The segregation of a B chromosome from the X chromosome was studied in male meiosis in two psyllid species, Rhinocola aceris (L.) and Psylla foersteri (Flor.) (Psylloidea, Homoptera). The frequency of segregation was determined from cells at metaphase II. In R. aceris, the B chromosome was mitotically stable and segregated quite regularly from the X chromosome in four geographically distant populations, while it showed less regular, but preferential segregation in one population. This was attributed to the presence of B chromosome variants that differ in their ability to interact with the X chromosome in segregation. In P. foersteri, the B chromosome was mitotically unstable and segregated preferentially from the X chromosome in spermatocyte cysts, which displayed one B chromosome in every cell. Behaviour of the B chromosome and X chromosome univalents during meiotic prophase and at metaphase I in R. aceris, and during anaphase I in P. foersteri suggested that the regular segregation resulted from the incorporation of B chromosomes in achiasmate segregation mechanisms with the X chromosome in the place occupied by the Y chromosome in species with XY system. The regular segregation of a B chromosome from the X chromosome may obscure the distinction of a B chromosome and an achiasmate Y chromosome in some cases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
R. T. Surosky  B. K. Tye 《Genetics》1988,119(2):273-287
We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.  相似文献   

6.
We have discovered an inordinately large chromosome pair at the pachytene stage in the oocyte of the sex-limited pB (black larval marking) silkworm (Bombyx mori) strain (TWPB). We have analyzed the composition and arrangement of this large chromosome. A genetic linkage analysis shows that the large chromosome is made up of the W chromosome, the second chromosome fragment (pB fragment), and the fifth chromosome (linkage group) containing at least the region from map position 0.0 to 40.8. We also observed a sex heterochromatin body (SB) that we deduced to be made up of condensed W chromosomes. The number of SBs in each female nucleus among the sucking stomach cells of the TWPB strain was variable. Evidently, the W chromosome of the TWPB strain is attached to another chromosome. The composition of the W chromosome, the second chromosome fragment, and the fifth chromosome was studied through linkage analysis for these three chromosomes. We used two strains derived from the TWPB strain, the sex-limited pM (moricaud larval marking)-like (TWPML) and the autosomal pM-like (T5PML). The results show that the TWPML strain originates through a detachment of the fifth chromosome from the large chromosome of the TWPB strain, and the T5PML strain originates through a detachment of the W chromosome from that. Accordingly, the large chromosome of the TWPB strain is arranged in the order W chromosome--second chromosome fragment--fifth chromosome.  相似文献   

7.
Hiraoka M  Watanabe K  Umezu K  Maki H 《Genetics》2000,156(4):1531-1548
To obtain a broad perspective of the events leading to spontaneous loss of heterozygosity (LOH), we have characterized the genetic alterations that functionally inactivated the URA3 marker hemizygously or heterozygously situated either on chromosome III or chromosome V in diploid Saccharomyces cerevisiae cells. Analysis of chromosome structure in a large number of LOH clones by pulsed-field gel electrophoresis and PCR showed that chromosome loss, allelic recombination, and chromosome aberration were the major classes of genetic alterations leading to LOH. The frequencies of chromosome loss and chromosome aberration were significantly affected when the marker was located in different chromosomes, suggesting that chromosome-specific elements may affect the processes that led to these alterations. Aberrant-sized chromosomes were detected readily in approximately 8% of LOH events when the URA3 marker was placed in chromosome III. Molecular mechanisms underlying the chromosome aberrations were further investigated by studying the fate of two other genetic markers on chromosome III. Chromosome aberration caused by intrachromosomal rearrangements was predominantly due to a deletion between the MAT and HMR loci that occurred at a frequency of 3.1 x 10(-6). Another type of chromosome aberration, which occurred at a frequency slightly higher than that of the intrachromosomal deletion, appeared to be caused by interchromosomal rearrangement, including unequal crossing over between homologous chromatids and translocation with another chromosome.  相似文献   

8.
The status of an extra univalent, if it is a B chromosome or an achiasmatic Y chromosome, associating with the X chromosome in male meiosis of Cacopsylla peregrina (Frst.) (Homoptera, Psylloidea) was analysed. One extra univalent was present in all males collected from three geographically well separated populations, it was mitotically stable, and showed precise segregation from the X chromosome. These findings led us to propose that the univalent represents in fact a Y chromosome. The behaviour of the X and Y chromosomes during meiotic prophase suggested that their regular segregation was based on an achiasmatic segregation mechanism characterised by a 'touch and go' pairing of segregating chromosomes at metaphase I. To explain the formation of the achiasmatic Y within an insect group with X0 sex chromosome system, it was suggested that the Y chromosome has evolved from a mitotically stable B chromosome that was first integrated into an achiasmatic segregation system with the X chromosome, and has later become fixed in the karyotype as a Y chromosome.  相似文献   

9.
The effects of chromosome rearrangement on genome size are poorly understood. While chromosome duplications and deletions have predictable effects on genome size, chromosome fusion, fission, and translocation do not. In this study, we investigate genome size and chromosome number evolution in 87 species of Carex, one of the most species-rich genera of flowering plants and one that has undergone an exceptionally high rate of chromosome rearrangement. Using phylogenetic generalized least-squares regression, we find that the correlation between chromosome number and genome size in the genus grades from flat or weakly positive at fine phylogenetic scales to weakly negative at deeper phylogenetic scales. The rate of chromosome evolution exhibits a significant increase within a species-rich clade that arose approximately 5 million years ago. Genome size evolution, however, demonstrates a nearly constant rate across the entire tree. We hypothesize that this decoupling of genome size from chromosome number helps explain the high lability of chromosome number in the genus, as it reduces indirect selection on chromosome number.  相似文献   

10.
A direct tandem duplication chromosome 21 was found in a boy with Down's syndrome. The proband's mother and grandmother both carried a ring chromosome 21. The observed duplication chromosome in the child may be explained either by recombination between the maternal ring and the mother's normal chromosome 21 or by break of a double-sized ring chromosome 21.  相似文献   

11.
M J Wagner  Y Ge  M Siciliano  D E Wells 《Genomics》1991,10(1):114-125
We have characterized a panel of somatic cell hybrids that carry fragments of human chromosome 8 and used this panel for the regional localization of anonymous clones derived from a chromosome 8 library. The hybrid panel includes 11 cell lines, which were characterized by Southern blot hybridization with chromosome 8-specific probes of known map location and by fluorescent in situ hybridization with a probe derived from a chromosome 8 library. The chromosome fragments in the hybrid cell lines divide the chromosome into 10 intervals. Using this mapping panel, we have mapped 56 newly derived anonymous clones to regions of chromosome 8. We have also obtained physical map locations for 7 loci from the genetic map of chromosome 8, thus aligning the genetic and physical maps of the chromosome.  相似文献   

12.
The premature chromosome condensation (PCC) technique was used to study several factors that determine the yield of chromosome fragments as observed in interphase cells after irradiation. In addition to absorbed dose and the extent of chromosome condensation at the time of irradiation, changes in chromosome conformation as cells progressed through the cell cycle after irradiation affected dramatically the yield of chromosome fragments observed. As a test of the effect of chromosome decondensation, irradiated metaphase Chinese hamster ovary (CHO) cells were allowed to divide, and the prematurely condensed chromosomes in the daughter cells were analyzed in their G1 phase. The yield of chromosome fragments increased as the daughter cells progressed toward S phase and chromosome decondensation occurred. When early G1 CHO cells were irradiated and analyzed at later times in G1 phase, an increase in chromosome fragmentation again followed the gradual increase in chromosome decondensation. As a test of the effect of chromosome condensation, G0 human lymphocytes were irradiated and analyzed at various times after fusion with mitotic CHO cells, i.e., as condensation proceeded. The yield of fragments observed was directly related to the amount of chromosome condensation allowed to take place after irradiation and inversely related to the extent of chromosome condensation at the time of irradiation. It can be concluded that changes in chromosome conformation interfered with rejoining processes. In contrast, resting chromosomes (as in G0 lymphocytes irradiated before fusion) showed efficient rejoining. These results support the hypothesis that cytogenetic lesions become observable chromosome breaks when chromosome condensation or decondensation occurs during the cell cycle.  相似文献   

13.
Turnover of sex chromosomes and speciation in fishes   总被引:1,自引:0,他引:1  
Closely related species of fishes often have different sex chromosome systems. Such rapid turnover of sex chromosomes can occur by several mechanisms, including fusions between an existing sex chromosome and an autosome. These fusions can result in a multiple sex chromosome system, where a species has both an ancestral and a neo-sex chromosome. Although this type of multiple sex chromosome system has been found in many fishes, little is known about the mechanisms that select for the formation of neo-sex chromosomes, or the role of neo-sex chromosomes in phenotypic evolution and speciation. The identification of closely related, sympatric species pairs in which one species has a multiple sex chromosome system and the other has a simple sex chromosome system provides an opportunity to study sex chromosome turnover. Recently, we found that a population of threespine stickleback (Gasterosteus aculeatus) from Japan has an X1X2Y multiple sex chromosome system resulting from a fusion between the ancestral Y chromosome and an autosome, while a sympatric threespine stickleback population has a simple XY sex chromosome system. Furthermore, we demonstrated that the neo-X chromosome (X 2) plays an important role in phenotypic divergence and reproductive isolation between these sympatric stickleback species pairs. Here, we review multiple sex chromosome systems in fishes, as well as recent advances in our understanding of the evolutionary role of sex chromosome turnover in stickleback speciation.  相似文献   

14.
Although the two Vibrio cholerae chromosomes initiate replication in a coordinated fashion, we show here that each chromosome appears to have a specific replication initiator. DnaA overproduction promoted overinitiation of chromosome I and not chromosome II. In contrast, overproduction of RctB, a protein that binds to the origin of replication of chromosome II, promoted overinitiation of chromosome II and not chromosome I.  相似文献   

15.
Xkid, a chromokinesin required for chromosome alignment on the metaphase plate   总被引:20,自引:0,他引:20  
Metaphase chromosome alignment is a key step of animal cell mitosis. The molecular mechanism leading to this equatorial positioning is still not fully understood. Forces exerted at kinetochores and on chromosome arms drive chromosome movements that culminate in their alignment on the metaphase plate. In this paper, we show that Xkid, a kinesin-like protein localized on chromosome arms, plays an essential role in metaphase chromosome alignment and in its maintenance. We propose that Xkid is responsible for the polar ejection forces acting on chromosome arms. Our results show that these forces are essential to ensure that kinetochores and chromosome arms align on a narrow equatorial plate during metaphase, a prerequisite for proper chromosome segregation.  相似文献   

16.
An awned rice(Oryza sativa) plant carrying a tiny extra chromosome was discovered among the progeny of a telotrisomic line 2nt4L. Fluorescence in situ hybridization(FISH) using chromosome specific BAC clones revealed that this extra chromosome was a ring chromosome derived from part of the long arm of chromosome 4. So the aneuploidy plant was accordingly named as 2nt4L ring. We did not detect any Cent O FISH signals on the ring chromosome, and found only the centromeric probe Centromeric Retrotransposon of Rice(CRR) was co-localized with the centromere-specific histone CENH3 as revealed by sequential FISH after immunodetection. The extra ring chromosome exhibited a unique segregation pattern during meiosis, including no pairing between the ring chromosome and normal chromosome 4during prophase I and pre-separation of sister chromatids at anaphase I.  相似文献   

17.
R S Kota  B S Gill  S H Hulbert 《Génome》1994,37(4):619-624
The chromosome 1R of rye, or the midget chromosome, is necessary for plump, viable seed development and fertility restoration in the alloplasmic line with rye cytoplasm and a hexaploid wheat nucleus. The midget chromosome of rye represents 1/15th of the physical length of the chromosome 1R of rye. C-banding analysis indicated that the centromeric and pericentric region (approximately 30% physical length) of the midget chromosome is heterochromatic and the distant 70% physical length is euchromatic. These data suggest that the midget chromosome may represent the pericentric region of the long arm of chromosome 1R. In contrast with earlier reports, our results indicate that an array of rye-specific repeated sequences (both dispersed and tandem) are present on the midget chromosome. Various rye-specific repeated DNA sequences that are present on the midget chromosome will be useful in constructing a long-range map and studying the genomic organization of the midget chromosome. It is unclear if any of these repeated DNA sequences are involved in the origin of the midget chromosome.  相似文献   

18.
Saccharomyces cerevisiae diploids homozygous for the rad52-1 mutation have previously been shown to lose chromosomes mitotically. Spontaneous events and events following low levels of X-ray or methyl methanesulfonate treatment result in monosomic diploids, whereas higher levels of treatment result in near haploidization. This rad52-1-dependent chromosome loss has been used to develop a new mapping method which can be used to assign a previously unmapped gene to a chromosome. Chromosome loss mapping can be done in either of two ways: if a diploid, homozygous for rad52-1 but heterozygous for a variety of other recessive markers, is constructed with an unmapped recessive mutation in coupling with known chromosomal markers, chromosome loss will result in the coordinate expression of the mutation and other recessive markers on the same chromosome; if, however, the diploid is constructed with the unmapped mutation in repulsion to chromosomal markers, then even haploidization will never result in the coordinate expression of the unmapped mutation and other markers on the same homologous chromosome pair--This mapping method and subsequent tetrad analyses have been used to locate hom6 on chromosome X, ade4 on chromosome XIII and cdc31 on chromosome XV and to demonstrate that met5, previously assigned to chromosome V, actually maps to chromosome X; the met- marker on chromosome V has been shown to be met6. GAL80 and SUP5, previously assigned to an unmapped fragment, have now been mapped to the right arm of chromosome XIII.  相似文献   

19.
The chromosomal localization of the gene which complements radiation hypersensitivity of AT cells was studied by microcell-mediated chromosome transfer. A 6-thioguanine-resistant derivative of an immortalized AT cell line, AT2KYSVTG, was used as a recipient for microcell-mediated chromosome transfer from 4 strains of mouse A9 cells, 3 of which carried a human X/11 recombinant chromosome containing various regions of chromosome 11, while the other carried an intact X chromosome. HAT-resistant microcell hybrids were isolated and examined for their radiosensitivity and chromosome constitution. The microcell hybrid clones obtained from the transfer of an intact X chromosome or an X/11 chromosome bearing the pter → q13 region of chromosome 11 did not show a difference in radiosensitivity from parental AT cells, while those obtained from the transfer of X/11 chromosomes bearing either the p11 → qter or the pter → q23 region of chromosome 11 exhibited a marked radioresistance which was comparable to normal human fibroblasts. A HAT-resistant but radiosensitive variant was further obtained from the microcell fusion with an A9 cell strain carrying an X/11 chromosome bearing the 11p11 → qter region, in which a deletion at the 11q23 region was found. The results indicate that the gene which complements a radiosensitive phenotype of AT is located at the q23 region of chromosome 11.  相似文献   

20.
Chromosomes of Bombyx mori (n = 28) and of Bombyx mandarina (n = 27) were studied cytogenetically to resolve the origin of the large M chromosome in the Japaneses type of B. mandarina. In the F1 progeny from the reciprocal cross between B. mandarina and B. mori, the mitotic chromosome number was 2n = 55, and a chromosome configuration of 26 bivalents plus 1 trivalent was observed at metaphase I of germ cells. The trivalent chromosome consisted of the M chromosome from B. mandarina and two chromosomes from B. mori. When males of B. mori were mated to the F1 females, nuclei with two types of chromosome number (2n = 55 and 2n = 56) and two sets of chromosome pairs (26 bivalents plus 1 trivalent versus 28 bivalents) were observed in the metaphase I stage. Linkage analysis showed that the 14th chromosome of B. mori was involved in these two types of chromosome segregation. This result indicates that the M chromosome in B. mandarina arose from a fusion between a chromosome corresponding to the 14th linkage group and another, yet unidentified linkage group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号