首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Obesity is considered a chronic low-grade inflammatory status and the stromal vascular fraction (SVF) cells of adipose tissue (AT) are considered a source of inflammation-related molecules. We identified YKL-40 as a major protein secreted from SVF cells in human visceral AT. YKL-40 expression levels in SVF cells from visceral AT were higher than in those from subcutaneous AT. Immunofluorescence staining revealed that YKL-40 was exclusively expressed in macrophages among SVF cells. YKL-40 purified from SVF cells inhibited the degradation of type I collagen, a major extracellular matrix of AT, by matrix metalloproteinase (MMP)-1 and increased rate of fibril formation of type I collagen. The expression of MMP-1 in preadipocytes and macrophages was enhanced by interaction between these cells. These results suggest that macrophage/preadipocyte interaction enhances degradation of type I collagen in AT, meanwhile, YKL-40 secreted from macrophages infiltrating into AT inhibits the type I collagen degradation.  相似文献   

2.
3.
Type I collagen is a fibril-forming heterotrimer composed of two alpha1 and one alpha2 chains and plays a crucial role in cell-matrix adhesion and cell differentiation. Through a comprehensive differential display screening of oncogenic ras target genes, we have shown that the alpha1 chain of type I collagen (col1a1) is markedly down-regulated by the ras oncogene through the mitogen-activated protein kinase pathway. Although ras-transformed cells are no longer able to produce and secrete endogenous collagen, they can still adhere to exogenous collagen, suggesting that the cells express a collagen binding factor(s) on the cell surface. When the region of col1a1 encompassing the C-terminal glycine repeat and C-prodomain (amino acids 1000-1453) was affinity-labeled with human placental alkaline phosphatase, the secreted trimeric fusion protein could bind to the surface of Ras-transformed cells. Using biochemical purification followed by matrix-assisted laser desorption/ionization mass spectrometry analysis, we identified this collagen binding factor as Endo180 (uPARAP, CD280), a member of the mannose receptor family. Ectopic expression of Endo180 in CosE5 cells followed by in situ staining and quantitative binding assays confirmed that Endo180 indeed recognizes and binds to placental alkaline phosphatase. The interaction between Endo180 and the C-terminal region of type I collagen appears to play an important role in cell-matrix adhesion.  相似文献   

4.
Collagen type I extracted with acid or digested with pepsin forms fibrils under physiological conditions, but this ability is lost when the collagen is treated with alkaline solution or digested with matrix metalloproteinase 1 (MMP1). When acid-soluble collagen was incubated with alkali-treated collagen, the fibril formation of acid-soluble collagen was inhibited. At 37 degrees C, at which alkali-treated collagen is denatured, the lag time was prolonged but the growth rate of fibrils was not affected. At 30 degrees C, at which the triple helical conformation of alkali-treated collagen is retained, the lag time was prolonged and the growth rate reduced. Heat-denatured alkali-treated collagen and MMP1-digested fragments have no inhibitory effect on the fibril formation of acid-soluble collagen. This means that the triple helical conformation and the molecular length are important factors in the interaction of collagen molecules and that alkali-treated collagen acts as a competitive inhibitor for fibril formation of collagen. We found that alkali-treated collagen and MMP1-digested fragments form fibrils that lack the D periodic banding pattern and twisted morphology under acidic conditions at the appropriate ionic strength. We also calculated the relative strengths of hydrophobic and electrostatic interactions between collagen molecules. When the hydrophobic interaction between linear collagen molecules was considered, we found a pattern of periodic maximization of the interactive force including the D period. On the other hand, the electrostatic interaction did not show the periodic pattern, but the overall interaction score affected fibril formation.  相似文献   

5.
Decorin binds near the C terminus of type I collagen   总被引:5,自引:0,他引:5  
Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment alpha1(I) CB6 and is approximately 25 nm from the C terminus, in a zone that coincides with the c(1) band of the collagen fibril d-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.  相似文献   

6.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

7.
Purified type I collagen gel used as culture substrate was composed of unstriated fibrils. Before culture, gel fragments were coated with culture medium with or without fetal calf serum (FCS+ coated or FCS- coated gels). Each gel fragment was apposed to a fragment of frog skin at the medium/air interface in Trowell culture chamber. After 7 days at 20 degrees C, the coated gels were covered with newly formed epidermis containing fibronectin localized around the keratinocytes, whose morphology was considerably modified. Fibroblast-shaped keratinocytes were localized in the anterior zone of the newly formed epidermis on FCS+ gels. The long axis of the cells was parallel to the gel surface, where numerous unstriated fibrils were located. Polyhedral keratinocytes were located in the posterior zone on FCS+ gels or the anterior and posterior zones on FCS- gels with the long axis perpendicular to the gel surface. Numerous cross-striated fibrils were found under the cultured keratinocytes in the vicinity of the basal filipodia. This model is useful for the study of collagen gel reorganization by keratinocytes.  相似文献   

8.
G C Na 《Biochemistry》1989,28(18):7161-7167
Type I collagen purified from calf skin was further separated into monomeric and oligomeric fractions and characterized with gel electrophoresis and measurement of solution viscosity. The thermal stabilities of the triple-helical structure of the collagen molecules of these preparations and the fibrils assembled therefrom were determined with differential UV spectroscopy and scanning microcalorimetry. The monomeric collagen was reduced with NaBH4-, and the kinetics and equilibrium of the reversible fibril assembly-disassembly were examined in detail. Fibril assembly and disassembly of the collagen induced by slow scans of temperature showed hysteresis. The assembly curve was very sharp whereas the disassembly curve was gradual. Equilibrium centrifugation showed the collagen disassembled from the fibrils to be predominantly monomers. However, unlike the unassembled collagen, the collagen disassembled from fibrils by cooling showed no lag phase in subsequent cycles of fibril assembly. The thermodynamic parameters of fibril growth were derived from a fibril disassembly curve. Fibril growth was weaker for the NaBH4-reduced monomeric collagen than the native crude collagen, perhaps due to the removal of oligomers and the changes in the molecular structure brought by the reduction. The results corroborated the strongly cooperative mechanism for the fibril assembly proposed in the preceding paper.  相似文献   

9.
10.
Structural stability of the extracellular matrix is primarily a consequence of fibrillar collagen and the extent of cross-linking. The relationship between collagen self-assembly, consequent fibrillar shape and mechanical properties remains unclear. Our laboratory developed a model system for the preparation of self-assembled type I collagen fibers with fibrillar substructure mimicking the hierarchical structures of tendon. The present study evaluates the effects of pH and temperature during self-assembly on fibrillar structure, and relates the structural effects of these treatments on the uniaxial tensile mechanical properties of self-assembled collagen fibers. Results of the analysis of fibril diameter distributions and mechanical properties of the fibers formed under the different incubation conditions indicate that fibril diameters grow via the lateral fusion of discrete approximately 4 nm subunits, and that fibril diameter correlates positively with the low strain modulus. Fibril diameter did not correlate with either the ultimate tensile strength or the high strain elastic modulus, which suggests that lateral aggregation and consequently fibril diameter influences mechanical properties during small strain mechanical deformation. We hypothesize that self-assembly is mediated by the formation of fibrillar subunits that laterally and linearly fuse resulting in fibrillar growth. Lateral fusion appears important in generating resistance to deformation at low strain, while linear fusion leading to longer fibrils appears important in the ultimate mechanical properties at high strain.  相似文献   

11.
12.
HSP47, a collagen-specific molecular chaperone, interacts with unfolded and folded procollagens. Binding of chicken HSP47 to native bovine type I collagen was studied by fluorescence quenching and cooperative binding with a collagen concentration at half saturation (K(half)) of 1.4 x 10(-7) m, and a Hill coefficient of 4.3 was observed. Similar results are observed for the binding of mouse HSP47 recombinantly expressed in Escherichia coli. Chicken HSP47 binds equally well to native type II and type III procollagen without the carboxyl-terminal propeptide (pN type III collagen), but binding to triple helical collagen-like peptides is much weaker. Weak binding occurred to both hydroxylated and nonhydroxylated collagen-like peptides, and a significant chain length dependence was observed. Binding of HSP47 to native type I collagen had no effect on the thermal stability of the triple helix. Refolding of type I collagen in the presence of HSP47 showed minor changes, but these are probably not biologically significant. Binding of HSP47 to bovine pN type III collagen has only minor effects on the thermal stability of the triple helix and does not influence the refolding kinetics of the triple helix.  相似文献   

13.
14.
The lectin pathway of complement is activated when a carbohydrate recognition complex and associated serine proteases binds to the surface of a pathogen. Three recognition subcomponents have been shown to form active initiation complexes: mannan-binding lectin (MBL), L-ficolin, and H-ficolin. The importance of MBL in antimicrobial host defense is well recognized, but the role of the ficolins remains largely undefined. This report shows that L-ficolin specifically binds to lipoteichoic acid (LTA), a cell wall component found in all Gram-positive bacteria. Immobilized LTA from Staphylococcus aureus binds L-ficolin complexes from sera, and these complexes initiate lectin pathway-dependent C4 turnover. C4 activation correlates with serum L-ficolin concentration, but not with serum MBL levels. L-ficolin binding and corresponding levels of C4 turnover were observed on LTA purified from other clinically important bacteria, including Streptococcus pyogenes and Streptococcus agalactiae. None of the LTA preparations bound MBL, H-ficolin, or the classical pathway recognition molecule, C1q.  相似文献   

15.
Thrombospondins (TSPs) 1 and 2 are extracellular modular glycoproteins that are best known for their anti-angiogenic properties and their ability to modulate cell-matrix interactions. However, these proteins, and in particular TSP2, are pleiotropic in function and affect processes as disparate as bone growth and hemostasis. In recognition of their ability to influence a wide variety of cell functions, and in the absence of convincing evidence for their participation as integral components of extracellular structures, the term 'matricellular' has been applied to these and a small group of functionally related proteins. In this review, we focus on the role of TSP1 and 2 in two forms of injury in mice, excisional skin wounds and subcutaneously implanted biomaterials, and take advantage of mice with targeted disruptions of one or both genes to identify likely biochemical mechanisms that could account for the characteristics of the injury response in these knockout mice. In work that stems largely from our own laboratory, we show that pericellular levels of the matrix metalloproteinase, MMP2, are controlled to a large extent by TSP2 (and potentially also by TSP1), and that elevated levels of MMP2 are likely to account in part for defects as diverse as reduced cellular adhesion, abnormal collagen fibril structure, and increased endothelial cell and vascular proliferation.  相似文献   

16.
1. Salt-soluble rat skin collagen was precipitated from solution at neutral pH and 37 degrees . On cooling, a portion of the collagen returned into solution. The fractions were separated, the supernatant was concentrated and the precipitate was redissolved in dilute acetic acid. 2. Solutions of supernatant and precipitate were subjected to the same fractionation procedure, giving four fractions. 3. Each fraction was examined by starch-gel electrophoresis and a relationship between subunit composition and the fractionation procedure was noted. The collagen that redissolved on cooling contained less of the more highly cross-linked components than did either the fraction remaining in the precipitate or the starting material.  相似文献   

17.
Using a gel mobility shift assay we show that a 40 kd protein (p40), present in extracts of yeast mitochondria, binds specifically to the 5'-untranslated leader of cytochrome c oxidase subunit II mRNA. Binding of p40 to coxII RNA protects an 8-10 nucleotide segment from diethylpyocarbonate modification, indicating that the protein interacts with only a restricted region of the 5'-leader. This segment is located at position -12 with respect to the initiation AUG. Deletion of 10 nucleotides encompassing this site completely abolishes protein binding. Nevertheless, Bal31 deletion analysis within the coxII leader shows that a major part of the leader is essential for p40 binding, suggesting that binding of the protein is also dependent on secondary structural features. p40 binds to other mitochondrial leader mRNAs including those for coxI, coxIII and cyt b. p40 is present in a cytoplasmic (rho0) petite mutant lacking mitochondrial protein synthesis. It is therefore presumably nuclear encoded. The possible biological function of the protein is discussed.  相似文献   

18.
In our earlier analysis of intermolecular interactions between collagen molecules, a major concern with the program employed is that it compared numbers of interactions between residues located on edges of defined, identical width and thus would not necessarily compare the same number of residues in each edge. This would be particularly true of some values of θ where well-defined vertical ranking of residues occurs. We have examined ranking of residues in relation to intermolecular edge association between bovine skin [α1(I)]3 model collagen molecules by utilizing two different methods of counting intermolecular interactions between residues. The interaction peaks at θ = 27.69° and 36.00° are absent or relatively less intense in the plots obtained by utilizing radial distances between interacting residues instead of vertical bands of defined width. These studies suggest caution in accepting recently reported analyses of superhelix coiling of the collagen molecule which point to values of 27.69° or 36.00° for the twist of the superhelix. Although intramolecular interactions clearly point to interaction of collagen molecules at D intervals, they are insufficiently restricted in distribution to provide a reliable estimate of the superhelix angle by procedures so far employed.  相似文献   

19.
Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.  相似文献   

20.
Human unhydroxylated homotrimeric triple-helical collagen I produced in transgenic plants was used as an experimental model to provide insights into the role of hydroxyproline in molecular folding and fibril formation. By using chemically cross-linked molecules, we show here that the absence of hydroxyproline residues does not prevent correct folding of the recombinant collagen although it markedly slows down the propagation rate compared with bovine fully hydroxylated homotrimeric collagen I. Relatively slow cis-trans-isomerization in the absence of hydroxyproline likely represents the rate-limiting factor in the propagation of the unhydroxylated collagen helix. Because of the lack of hydroxylation, recombinant collagen molecules showed increased flexibility as well as a reduced melting temperature compared with native homotrimers and heterotrimers, whereas the distribution of charged amino acids was unchanged. However, unlike with bovine collagen I, the recombinant collagen did not self-assemble into banded fibrils in physiological ionic strength buffer at 20 degrees C. Striated fibrils were only obtained with low ionic strength buffer. We propose that, under physiological ionic strength conditions, the hydroxyl groups in the native molecule retain water more efficiently thus favoring correct fibril formation. The importance of hydroxyproline in collagen self-assembly suggested by others from the crystal structures of collagen model peptides is thus confirmed experimentally on the entire collagen molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号