首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
‘Physiological maturity’, i.e. the time when seedsreach their maximum dry weight during development, occurredwhen maturation drying on the parent plant in the field hadreduced seed moisture content to approximately 60 per cent infaba bean (Vicia faba L.), lentil (Lens culinaris Medic.), chickpea(Cicer arietinum L.), white lupin (Lupinus albus L.), soya bean(Glycine max [L.] Merr.) and pea (Pisum sativum L.) The onsetof desiccation-tolerance, i.e. the ability of seeds to germinatefollowing harvest and rapid artificial drying, coincided withphysiological maturity, except in pea where it occurred a littleearlier at about 70 per cent moisture content. Maximum seedquality as determined by maximum viability, minimum seedlingabnormalities and maximum seedling size occurred in pea, chickpeaand lupin when seeds were harvested for rapid drying at physiologicalmaturity; but for maximum seed quality in the other speciesmaturation drying had to proceed further - to about 45 per centmoisture content in soya bean and to about 30 per cent moisturecontent in lentil and faba bean seed crops. Much of this variationamongst the six species, however, was due to differences inthe variation in maturity within each seed crop. Results forindividual pods showed that peak maturity, i.e. maximum seedquality following harvest and rapid artificial drying, was achievedin all six species once maturation drying had reduced the moisturecontent of the seeds to 45–50 per cent. In pea, faba beanand soya bean there was a substantial decline in viability andan increase in seedling abnormalities when harvest was delayedbeyond the optimal moisture content for harvest.  相似文献   

2.
Control of Seed Growth in Soya Beans [Glycine max (L.) Merrill]   总被引:2,自引:0,他引:2  
The seed is the primary sink for photosynthate during reproductivegrowth and an understanding of the mechanisms controlling therate of seed growth is necessary to understand completely theyield production process. The growth rate of individual seedsof seven soya bean [Glycine max (L.) Merrill] cultivars withgenetic differences in seed size varied from 10.8 to 3.9 mgseed–1 day–1. The growth rates were highly correlatedwith final seed size. The growth rate of cotyledons culturedin a complete nutrient medium was highly correlated with thegrowth rate of seeds developing on the plant and with finalseed size. The number of cells per seed in the cotyledons variedfrom 10.2 to 5.7 x 106 across the seven cultivars. The numberof cells per seed in the cotyledons was significantly correlatedwith final seed size and the seed growth rate both on the plantand in the culture medium. The data suggest that genetic differencesin seed growth rates are controlled by the cotyledons and thenumber of cells in the cotyledons may be the mechanism of control. Glycine max L., soya bean, seed size, growth rate, cell number, sink activity  相似文献   

3.
Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for α‐amylase inhibitor‐1 (αAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean αAI1 protein and the corresponding αAI1‐free segregating lines and non‐GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for αAI1. Proteomic analysis showed that in addition to the presence of αAI1, 33 other proteins were differentially accumulated in the αAI1‐expressing GM lines compared with their non‐GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of αAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium‐mediated transformation events. Sixteen proteins were identified after MALDI‐TOF‐TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin‐containing protein. Two proteins were uniquely expressed in the αAI1‐expressing GM lines and one new protein was present in both the αAI1‐expressing GM lines and their αAI1‐free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.  相似文献   

4.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

5.
VAN STADEN  J. 《Annals of botany》1979,44(6):671-675
The combined application of 10–6 M adenine and 10–6M mevalonic acid to soya bean callus accelerated its growth.Two biologically active compounds that co-chromatographed withzeatin and isopentenyl adenine were extracted from this callus.Studies with labelled adenine and mevalonic acid indicated thatthe cytokinin-dependent soya bean callus incorporated only avery small amount of the radioactive precursors into the biologically-activecompounds, making it extremely difficult to determine whetherthese compounds were synthesized de novo or whether they aroseas by-products of tRNA turnover. As cytokinins do not accumulatein rapidly-growing cytokinin-dependent soya bean callus culturedon kinetin as a source of cytokinin it seems as if biosynthesisde novo occurs when the callus is supplied with adenine andmevalonic acid. Glycine max (L.) Merrill, soya bean, callus culture, adenine, mevalonic acid, endogenous cytokinins  相似文献   

6.
An antiserum specific for the legumin and vicilin of Vicia faba was used to examine extracts of seeds of taxa of the Fabeae and Trifolieae for the presence of related storage proteins, Proteins related to legumin were found to be widely distributed, indicating considerable conservation of the genetic information for this protein. Only Pisum sativum contained a protein immunochemically identical with the vicilin of V. faba; the equivalent proteins of all other genera tested here were immunochemically different from vicilin.  相似文献   

7.
A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no vicilin subunits and may be clearly separated from vicilin by non-dissociating techniques. Unlike vicilin, convicilin does not interact with concanavalin A, and contains insignificant amounts of carbohydrates. Limited heterogeneity, as shown by isoelectric focusing, N-terminal analysis, and CNBr cleavage, is present in convicilin isolated from a single pea variety; genetic variation of the protein between pea lines has also been observed.  相似文献   

8.
Legumin and vicilin,storage proteins of legume seeds   总被引:3,自引:0,他引:3  
The structure, location in the seed and distribution of the storage protein of legume seeds are described. Methods which have been employed for the extraction, purification and characterisation of seed globulins are reviewed in relation to modern biochemical practice. The physical, chemical and immunological characteristics of the classical legumin and vicilin preparations from Pisum sativum are summarised and the distributions of proteins with sedimentation coefficients and/or immunological determinants similar to those of legumin and vicilin, are tabulated. The structure and composition of various purified legumin and vicilin-type proteins from a variety of legumes, are compared.  相似文献   

9.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

10.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

11.
The relationship between the induction of tracheary elementdifferentiation and exogenous L-methionine was examined in agar-growncultures of soya bean callus initiated from Glycine max L. ‘Wayne’and ‘Clark 63’. Although Wayne is a normal cultivarsoya bean, seedlings of Clark 63 exhibit abnormal growth at25 °C due to exessive ethylene biosynthesis at this temperature.Wayne callus showed increased xylogenesis in the presence ofexogenous L-methionine (3.7 µg 1–1) in comparisonto IAA–KN controls at both 20 and 25 °C. Clark 63callus produced greater numbers of tracheary elements in responseto exogenous L-methionine only at 25 °C. The induction ofxylem differentiation was independent of the maintenance temperatureof the stock cultures of both cultivars. Xylogenesis initiatedbyan IAA–KN medium was inhibited by the addition of AgNO3(20 mg 1–1) to the extent of 76.5 per cent in cv. Wayneand 6 per cent in cv. Clark 63. The inhibitory effect was partiallyreversed by the addition of L-methionine (3.7 µg 1–1)to the IAA–KN–AgNO2 medium. These data support thehypothesis that xylogenesis in vitro involves auxin, cytokininand ethylene. differentiation, xylogenesis, L-methionine, ethylene, Glycine max L., soya bean, callus culture, auxin, kinetin  相似文献   

12.
Comparative embryo development has been studied histologicallyin Lupinus albus, Lupinus mutabilis, Vicia faba, Pisum sativumand Latkyrus latifolius. The detailed histology of the stagesof embryo formation up to the early differentiation of tissuesof the seed is reported. The rate of embryogenesis has beentimed through 15 stages of development from anthesis and comparativerates of tissue formation established between the species. Themain observation was the slow rate of morphogenesis of embryosand seeds in Lupinus albus in comparison with the very rapidrate observed in Pisum sativum. A long period at the globularembryo stage, when embryo morphogenesis was inactive contributedto the extended development time of embryos and seeds in Lupinusalbus. Slow differentiation of reproductive tissues in L. albusdetermines late maturity in seeds and pods. Lupinus albus, white lupin, L. mutabilis, tarwi, Vicia faba, faba bean, Pisum sativum, pea, Lathyrus latifolius, everlasting pea, embryo development  相似文献   

13.
By means of crossed immunoelectrophoresis of the cotyledonary storage proteins of Pisum sativum L. it was shown that reduced accumulation of the legumin fraction, resulting from severe sulphur deficiency during growth, is accompanied by relative suppression of a quantitatively minor storage protein (Peak 3) shown previously by subunit analysis to be related to the vicilin series of holoproteins. The pattern of isotopic labelling of the storage proteins after injection of [35S]methionine into the pedicel during seed development under normal nutritional conditions indicated that Peak-3 protein, like legumin, has a relatively high content of sulphur amino-acids. Like certain of the vicilin molecules carrying the determinants responsible for Peak-4, Peak-3 protein binds selectively to concanavalin A.  相似文献   

14.
A fraction enriched in endoplasmic reticulum and Golgi membranesfrom developing cotyledons of Pisum sativum L. has proved tobe a convenient source for the isolation of prolegumin, theprecursor of the major 11S storage globulin of pea seeds. Twopro-proteins were isolated with molecular masses of 60 kDa and75 kDa, respectively. A monoclonal antibody, designated 2B1,against prolegumin was raised using the in vitro immunizationtechnique. This antibody recognizes the 60 kDa precursor polypeptide,but only the 20 kDa ß-subunit of mature legumin. Prolegumin,like the ß-subunit of the mature legumin, is a hydrophobicprotein. After import into the protein storage vacuole, andafter formation of the protein bodies trimeric 9S proleguminassembles into 12S hexamers without prior processing of theprecursor. Since prolegumin in vitro does not oligomerize intomore than 9S tnmers these results suggest that a protein-mediatedassembly of 9S prolegumin trimers into 12S prolegumin hexamersprobably occurs in the lumen of the protein storage vacuole.Prolegumin, but not mature legumin, binds very tightly to membranes.This property points to a possible way of identifying a putativeprolegumin receptor. Key words: Calcium, Endoplasmic reticulum, Golgi apparatus, legumim, monoclonal antibody, pea cotyledons  相似文献   

15.
Factorial combinations of five photoperiods (8 h 20 min, 10h, 11 h 40 min, 13 h 20 min and 15 h) and three night temperatures(14, 19 and 24 C) combined with a single day temperature (30C) were imposed on nodulated plants of nine soya bean genotypes[Glycine max (L.) Merrill] grown in pots in growth cabinets.The times to first appearance of open flowers were recorded.For a photoperiod-insensitive cultivar, and for the remainingeight photoperiod-sensitive genotypes in photoperiods shorterthan the critical daylength, the rates of progress towards flowering(the reciprocals of the times taken to flower) were linear functionsof mean diurnal temperature. For all photoperiod-sensitive genotypes,times to flowering in photoperiods longer than the criticaldaylength increased as inverse functions of both increasingphotoperiod and decreasing temperature. A consequence of thesetwo relations is that the critical daylength becomes longerwith higher mean temperatures. In the five photoperiod-sensitivegenotypes which flowered in all environments before the experimentwas terminated (after 150 d) the delays in flowering due tolow temperatures or long photoperiods were limited by a maximumperiod to flowering specific for each genotype. These resultsare discussed in relation to the development of a simple techniquefor the large-scale screening of soya bean germplasm to determinephoto-thermal response surfaces for flowering. Glycine max (L.) Merrill, soya bean, flowering, photoperiod, temperature, screening, germplasm  相似文献   

16.
In addition to the marked reduction in legumin synthesis and legumin mRNA levels reported earlier (Chandler, Higgins, Randall, Spencer 1983 Plant Physiol 71: 47-54), pulse labeling of S-deficient Pisum sativum L. seeds showed that a high relative level of total vicilin (vicilin plus convicilin) synthesis was maintained throughout the entire phase of protein accumulation, whereas in nondeficient seeds vicilin synthesis is largely confined to the first half of this phase. Fractionation of pulse-labeled proteins on Na-dodecylsulfate-polyacrylamide gels showed that the synthesis of the Mr 50,000 family of vicilin polypeptides was increased and greatly extended in S-deficient seeds whereas that of convicilin was slightly reduced. Other changes apparent from pulse-labeling experiments include a depression, to different degrees, in the synthesis of three major albumin polypeptides.

The level of the mRNAs for seven major seed proteins was followed throughout development of control and sulfur-deficient seeds. In all cases, the changes in each mRNA closely reflected the pattern of synthesis of its corresponding polypeptide seen by pulse labeling. S-deficient seeds showed an elevated level of Mr 50,000 vicilin mRNA which remained high throughout seed formation, whereas legumin mRNA levels were greatly reduced at all stages of development.

When S-deficient plants were given an adequate supply of sulfate midway through seed development, there was a shift toward the protein synthesis profile characteristic of healthy plants. The synthesis of legumin and two albumins rapidly increased and the synthesis of Mr 50,000 vicilin declined more slowly. Similar responses were seen in detached, S-deficient seeds supplied directly with adequate sulfate.

  相似文献   

17.
Soybean [Glycine max (L.) Merrill] seeds and cotyledons weregrown in an in vitro culture system to investigate the relationshipsbetween cell expansion (net water uptake by the seed) and drymatter accumulation. Seeds or cotyledons grown in a completenutrient medium containing 200 mol m–3 sucrose continueddry matter accumulation for up to 16 d after in planta seedsreached physiological maturity (maximum seed dry weight). Seedor cotyledon water content increased throughout the cultureperiod and the water concentration remained above 600 g kg–1fresh weight. These data indicate that the cessation of seeddry matter accumulation is controlled by the physiological environmentof the seed and is not a pre-determined seed characteristic.Adding 600 mol m–3 mannitol to the medium caused a decreasein seed water content and concentration. Seeds in this mediumstopped accumulating dry matter at a water concentration ofapproximately 550 g kg–1. The data suggest that dry matteraccumulation by soybean seeds can continue only as long as thereis a net uptake of water to drive cell expansion. In the absenceof a net water uptake, continued dry matter accumulation causesdesiccation which triggers maturation. Key words: Glycine max (L.) Merrill, solution culture, duration of seed growth, water content, dry matter accumulation  相似文献   

18.
In previous work, we demonstrated that there was an optimummoisture level for seed storage at a given temperature (Vertucciand Roos, 1990), and suggested, using thermodynamic considerations,that the optimum moisture content increased as the storage temperaturedecreased (Vertucci and Roos, 1993b). In this paper, we presentdata from a two year study of aging rates in pea (Pisum sativum)seeds supporting the hypothesis that the optimum moisture contentfor storage varies with temperature. Seed viability and vigourwere monitored during storage under dark or lighted conditionsat relative humidities between 1 and 90%, and temperatures between-5 and 65°C. The optimum moisture content varied from 0·015g H2O g-1 d.wt at 65°C to 0·101 g H2O g-1 d.wt at15°C under dark conditions and from 0·057 at 35°Cto 0·092 g H2O g-1 d.wt at -5°C under lighted conditions.Our results suggest that optimum moisture contents cannot beconsidered independently of temperature. This conclusion hasimportant implications for 'ultra-dry' and cryopreservationtechnologies.Copyright 1994, 1999 Academic Press Seed storage, seed aging, seed longevity, water content, temperature, glass, desiccation damage, ultradry, Pisum sativum L., pea, cryopreservation  相似文献   

19.
Floral development includes initiation of floral primordia andsubsequent anthesis as discrete events, even though in manyinvestigations only anthesis is considered. For ‘Ransom’soya bean [Glycine max (L.) Merrill] grown at day/night temperaturesof 18/14, 22/18, 26/22, 30/26, and 34/30 °C and exposedto photoperiods of 10, 12, 14, 15, and 16 h, time of anthesisranged from less than 21 days after exposure at the shorterphotoperiods and warmer temperatures to more than 60 days atlonger photoperiods and cooler temperatures. For all temperatureregimes, however, floral primordia were initiated under shorterphotopenods within 3 to 5 days after exposure and after notmore than 7 to 10 days exposure to longer photoperiods. Onceinitiation had begun, time required for differentiation of individualfloral primordia and the duration of leaf initiation at shootapices increased with increasing length of photoperiod. Whileproduction of nodes ceased abruptly under photoperiods of 10and 12 h, new nodes continued to be formed concurrently withinitiation of axillary floral primordia under photoperiods of14, 15 and 16 h. The vegetative condition at the main stem shootapex was prolonged under the three longer photoperiods and issuggestive of the existence of an intermediate apex under theseconditions. The results indicate that initiation and anthesisare controlled independently rather than collectively by photoperiod,and that floral initiation consists of two independent steps—onefor the first-initiated flower in an axil of a main stem leafand a second for transformation of the terminal shoot apex fromthe vegetative to reproductive condition. Apical meristem, intermediate apex, floral initiation, anthesis, photoinduction, Glycine max(L.) Merrill, soya bean, photoperiod, temperature  相似文献   

20.
Erickson and Michelini (1957) derived the plastochron index(PI) and a term sometimes referred to as the plastochron ratio(PR), as quantitative expressions of the vegetative developmentof plants. With the stable plant growth in environmental chambersand glasshouses, the assumptions used to derive these termshave been validated. However, more recently these expressionsare being used to characterize growth under the unstable conditionsresulting from the imposition of stress. This study examinesthe validity of the assumptions used to derive PI and PR forfield-grown soya beans [Glycine max (L.) Merrill] subjectedto drought stress. Under stress conditions, the assumptionswere not satisfied. In fact, observing change in PR appearedto be a good method for detecting drought stress in these plants.An alternate method for calculating PI based on a single, youngleaf was developed. This alternate method appeared to be a moresensitive indicator of changes in leaf emergence rate underunstable conditions. Plastochron index, plastochron ratio, Glycine max (L.), soya bean, drought, leaf growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号