首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biological action of Y. pestis adenylate cyclase on peritoneal leukocytes of guinea pigs has been studied by means of chemiluminescence. Y. pestis adenylate cyclase is supposed to contribute to the "oxidation" explosion of phagocytes in plague.  相似文献   

2.
Y. pestis extracellular adenylate cyclase suppresses the oxidation metabolism of peritoneal leukocytes in white mice. The character of the modulating action of the enzyme in its interaction with the target cell infers the participation of adrenergic receptors.  相似文献   

3.
Neuropeptide Y, a major neuropeptide and potent vasoconstrictor, inhibited isoproterenol-stimulated adenylate cyclase activity in cultured rat atrial cells as well as in atrial membranes. Prior treatment of the cells with pertussis toxin blocked the inhibitory action of neuropeptide Y. Pertussis toxin is known to uncouple the receptors for other inhibitors of adenylate cyclase by ADP-ribosylation of the alpha-subunit of Gi, the inhibitory guanine nucleotide binding component of adenylate cyclase. The toxin specifically catalyzed the ADP-ribosylation of a 41-kilodalton atrial membrane protein which corresponded to the Gi subunit. These results suggest that neuropeptide Y may mediate some of its physiological effects through specific receptors linked to the inhibitory pathway of adenylate cyclase.  相似文献   

4.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

5.
Human A431 and rat glioma C6 cells exposed to isoproterenol underwent a time- and dose-dependent loss of isoproterenol-stimulated adenylate cyclase activity. Desensitization was accompanied by sequestration of beta-adrenergic receptors, which became less accessible to the hydrophilic antagonist 3H-labeled 4-(3-tert-butylamino-2-hydroxypropoxy)benzimidazole-2-one hydrochloride ([3H]CGP-12177) and redistributed from the heavier density plasma membrane fraction to a lighter density membrane fraction. Prior treatment of the cells with concanavalin A or phenylarsine oxide blocked sequestration of the receptors but not desensitization of the agonist-stimulated adenylate cyclase. The membranes from such pretreated cells were exposed to alkali to inactivate adenylate cyclase, and the receptors were transferred to a foreign adenylate cyclase by membrane fusion with polyethylene glycol. beta receptors from desensitized cells exhibited a reduced ability to maximally stimulate the foreign adenylate cyclase, but remained accessible to [3H]CGP-12177 in the fused membranes. When isoproterenol-treated cells were washed free of agonist, there was a time-dependent recovery of agonist responsiveness and [3H]CGP-12177-binding sites. Using the fusion technique, the receptors recovered their functional activity in the resensitized cells. In concanavalin A-treated cells, desensitization and resensitization appeared to occur in the absence of receptor sequestration. Finally, membranes from desensitized cells pretreated with concanavalin A were fused with polyethylene glycol and assayed for agonist-stimulated adenylate cyclase. There was no reversal of the desensitized state. Thus, the primary, essential step in the desensitization process is a reduction in functional activity of the beta-adrenergic receptor. In contrast, sequestration of the receptors is not a prerequisite, but a secondary event during desensitization.  相似文献   

6.
7.
The effect of muscarinic agonist on adenylate cyclase was investigated in neonatal islet cells and in a clonal pituitary cell line (GH4C1) following labelling of the intracellular ATP pool with [2,8 3H]adenine. In islet cells carbamylcholine was without effect on basal or glucagon-stimulated adenylate cyclase activity, measured as 3H cyclic AMP production, but inhibited 3H cyclic AMP production in the clonal pituitary cells. The involvement of the inhibitory guanine nucleotide binding protein of adenylate cyclase (Ni) was investigated by the use of the Bordetella pertussis exotoxin, islet activating protein (IAP). Pre-treatment of islet cells with IAP was without effect on adenylate cyclase following carbamylcholine but in the clonal pituitary line abolished the inhibition of 3H cyclic AMP production. It is concluded that in the islet cell, in contrast to the clonal pituitary cell, muscarinic receptors are not effectively coupled through Ni to inhibit adenylate cyclase.  相似文献   

8.
Three forms of adenylate cyclase have been detected in Y. pestis: membrane-bound, cytoplasmic and extracellular. Extracellular adenylate cyclase has been purified so as to achieve a homogeneous state, and some of its physicochemical parameters have been investigated. In the process of purification the initial preparation of this enzyme has been subjected to heating at 100 degrees C for 15 minutes, fractionation with ammonium sulfate, and gel filtration on Sephadex G-100. The homogeneity of adenylate cyclase has been confirmed by electrophoresis in 7.5% polyacrylamide gel and precipitation by the plague agglutinating serum. The enzyme has been found to have a molecular weight of 30,000 daltons and to show the optimum activity at pH 7.0-7.2 and at a temperature between 37 and 40 degrees C. Monospecific rabbit serum to the homogeneous preparation of adenylate cyclase has been obtained.  相似文献   

9.
We identified receptors for neuropeptide Y (NPY) on an established human neuroblastoma cell line, SK-N-MC, which are functionally coupled to adenylate cyclase through the inhibitory guanine nucleotide-binding protein of adenylate cyclase, Gi. Intact SK-N-MC cells bound radiolabeled NPY with a KD of 2 nM and contained approximately 83,000 receptors/cell. Unlabeled porcine and human NPY and structurally related porcine peptide YY (PYY) competed with labeled NPY for binding to the receptors. NPY inhibited cyclic AMP accumulation in SK-N-MC cells stimulated by isoproterenol, dopamine, vasoactive intestinal peptide, cholera toxin, and forskolin. NPY inhibited isoproterenol-stimulated cyclic AMP production in a dose-dependent manner, with half-maximal inhibition at 0.5 nM NPY. Porcine and human NPY and porcine PYY gave similar dose-response curves. NPY also inhibited basal and isoproterenol-stimulated adenylate cyclase activity in disrupted cells. Pertussis toxin treatment of the cells completely blocked the ability of NPY to inhibit cyclic AMP production and adenylate cyclase activity. The toxin catalyzed the ADP-ribosylation of a 41-kDa protein in SK-N-MC cells that corresponds to Gi. The receptors on SK-N-MC cells appeared to be specific for NPY, as other neurotransmitter drugs, such as alpha-adrenergic, dopaminergic, muscarinic, and serotonergic antagonists, did not compete for either NPY binding or NPY inhibition of adenylate cyclase. Thus, SK-N-MC cells may be a useful model for investigating NPY receptors and NPY-mediated signal transduction.  相似文献   

10.
The action of endothelins (Et) on cAMP formation was studied in endothelial cells from rat brain microvessels. Et-1 and Et-3 had no action by themselves. They both inhibited cholera toxin stimulated adenylate cyclase by about 50%. K0.5 values were observed at 2 nM and 40 nM for Et-1 and Et-3 respectively, indicating an involvement of a low affinity Et-3 receptor. Coupling to adenylate cyclase was achieved by a pertussis toxin sensitive mechanism. Another action of endothelins in brain capillary endothelial cells was to stimulate phospholipase C. This action involved a low affinity Et-3 receptor and a pertussis toxin insensitive mechanism. It is concluded that in brain capillary endothelial cells, ETA like receptors are coupled to phospholipase C and to adenylate cyclase via two different mechanisms.  相似文献   

11.
Adenylate cyclase activity in NS20Y cells expressing D2L dopamine receptors was examined following chronic treatment with norepinephrine and epinephrine. Initial acute experiments revealed that both norepinephrine and epinephrine inhibited forskolin-stimulated cyclic AMP accumulation via D2 receptors. Furthermore, chronic 18 h activation of D2 dopamine receptors by norepinephrine or epinephrine induced a marked increase (>10-fold) in subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization of adenylate cyclase activity was blocked by D2 dopamine receptor antagonists and by pertussis toxin pretreatment. In contrast, concurrent activation of Galpha(s) or adenylate cyclase did not appear to alter noradrenergic agonist-induced sensitization.  相似文献   

12.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

13.
HeLa cells contain receptors on their surface which are beta-adrenergic in nature. The binding of (-)-[3H]dihydroalprenolol is rapid, reversible, stereospecific and of relatively high affinity. The HeLa cells also contain an adenylate cyclase which is activated by (-)-isoproterenol greater than (-)-epinephrine greater than (-)-norepinephrine. The adenylate cyclase of HeLa is also activated by guanyl-5'-ylimidodophosphate (Gpp(NH)p), a nonhydrolyzable analogue of GTP. Inclusion of both (-)-isoproterenol and Gpp(NH)p leads to approximately additive rather than synergistic activation of adenylate cyclase. After treatment of HeLa cells with 5mM sodium butyrate there is an increase in the number of beta-adrenergic receptors, but not in their affinity, which is reflected in an increased ability of (-)-isoproterenol to activate adenylate cyclase. Other properties of the beta-adrenergic receptor including association and dissociation rates, temperature optimum of adenylate cyclase and response to Gpp(NH)p are relatively unaffected by butyrate pretreatment of the cells.  相似文献   

14.
A latent, as well as an expressed form of adenylate cyclase coupled to beta-adrenergic receptors is present in intact crude synaptosomal preparations from bovine cerebellum. The latent adenylate cyclase activity was assayed in Krebs-Ringer buffer by [3H]adenine labeling and was found to be coupled to a beta 1-like adrenergic receptor. The externally accessible adenylate cyclase assayed in the same medium with [3H]ATP was stimulated via beta 2-adrenergic receptors.  相似文献   

15.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

16.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adrenergic receptor, adenylate cyclase, and protein kinase-stimulated phosphorylation showed: 1) beta-adrenergic receptor was detected in transverse tubules with a receptor density of 0.61 pmol/mg of protein. No significant binding was detected in longitudinal reticulum or in terminal cisternae. 2) Isoproterenol-stimulated adenylate cyclase was present in microsomes but was similarly confined to the transverse tubular fraction. The activity of F- stimulated cyclase in transverse tubules was 2.3 nmol/mg of protein/min. 3) No phosphorylation of microsomes by cyclic AMP and protein kinase could be detected. We conclude that the action of epinephrine on skeletal muscle is mediated through receptors and adenylate cyclase in the external membrane.  相似文献   

17.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

19.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

20.
Pertussis toxin, PT, abolishes inhibitory regulation of adenylate cyclase by cell surface receptors. Inhibitors of adenylate cyclase in GH3 cells, namely somatostatin and the muscarinic cholinergic agonist carbachol, lower the cytosolic free Ca2+ concentration. [Ca2+]i and cause hyperpolarization. These responses are selectively abolished by PT. It is concluded that the effects of somatostatin and carbachol to lower [Ca2+]i and to hyperpolarize are secondary to their inhibitory action on adenylate cyclase. In contrast, PT does not impair the TRH induced rise in [Ca2+]i in GH3 cells demonstrating that the coupling of TRH receptors to Ca2+ mobilization is not mediated by a PT substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号