首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptors for activated C kinase (RACKs) are a group of PKC binding proteins that have been shown to mediate isoform-selective functions of PKC and to be crucial in the translocation and subsequent functioning of the PKC isoenzymes on activation. RACK1 cDNA from the shrimp Penaeus japonicus was isolated by homology cloning. The hepatopancreas cDNA from this shrimp was found to encode a 318-residue polypeptide whose predicted amino acid sequence shared 91% homology with human G(beta2)-like proteins. Expression of the cDNA of shrimp RACK1 in vitro yielded a 45-kDa polypeptide with positive reactivity toward the monoclonal antibodies against RACK1 of mammals. The shrimp RACK1 was biotinylated and used to compare the effects of geranylgeranyl pyrophosphate and farnesyl pyrophosphate on its binding with PKCgamma in anti-biotin-IgG precipitates. PKCgammas were isolated from shrimp eyes and mouse brains. Both enzyme preparations were able to inhibit taxol-induced tubulin polymerization. Interestingly, when either geranylgeranyl pyrophosphate or farnesyl pyrophosphate was reduced to the submicrogram level, the recruitment activity of RACK1 with purified PKCgamma was found to increase dramatically. The activation is especially significant for RACK1 and PKCgamma from different species. The observation implies that the deprivation of prenyl pyrophosphate might function as a signal for RACK1 to switch the binding from the conventional isoenzymes of PKC (cPKC) to the novel isoenzymes of PKC (nPKC). A hydrophobic binding pocket for geranylgeranyl pyrophosphate in RACK1 is further revealed via prenylation with protein geranylgeranyl transferase I of shrimp P. japonicus.  相似文献   

2.
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.  相似文献   

3.
Cell-free extracts of Tanacetum vulgare, Artemisia annua, and Santolina chamaecyparissus contain seasonally-dependent enzyme systems that convert IPP4, DMAPP, GPP and NPP into water-soluble products in up to 96% yield. 3-Methyl-3,4-oxidobutan-1-ol; 3-methylbutan-1,3,4-triol; 3,7-dimethyl-6,7-oxido-octa-trans-2-en-1-ol; and 3,7-dimethylocta-trans,trans-2,5-dien-1,7-diol were major products when IPP and GPP respectively were substrates and several other terpene epoxides and their ring-opened products were tentatively identified. 2-CEPA blocked formation of diols from the epoxides. The occurrence of these enzymes accounts for some hitherto puzzling observations that have arisen in studies of monoterpene biosynthesis both in vivo and in vitro.  相似文献   

4.
5.
2-(Acyloxy)ethylphosphonate analogues of geranyl, farnesyl, and geranylgeranyl pyrophosphate have been prepared. Horner–Wadsworth–Emmons condensation of different terpene aldehydes with an unsymmetrical bisphosphonate was the key step in syntheses of the phosphonates bearing ,β-unsaturated acyloxy groups. After preparation of the respective phosphonic acids through reaction with TMSBr, both acids and esters were tested for their effects on DNA synthesis in human-derived myeloid and lymphoid leukemia cell lines. The phosphonate esters varied substantially in their ability to impair proliferation of the different cell lines, but testing against one possible target, farnesyl protein transferase (FPTase), revealed little impact at concentrations ranging up to 10 μM. Because the corresponding 2,3-dihydro compounds showed similar biological activity, conjugate addition would not appear to be involved in the toxicity.  相似文献   

6.
Human Vgamma2Vdelta2(+) T cells proliferate in vivo during many microbial infections. We have found that Vgamma2Vdelta2(+) T cells recognize nonpeptide prenyl pyrophosphates and alkylamines. We now have defined structural features that determine the antigenicity of prenyl pyrophosphates by testing synthetic analogs for bioactivity. We find that the carbon chain closest to the pyrophosphate moiety plays the major role in determining bioactivity. Changes in this area, such as the loss of a double bond, abrogated bioactivity. The loss of a phosphate from the pyrophosphate moiety also decreased antigenicity 100- to 200-fold. However, nucleotide monophosphates could be added with minimal changes in bioactivity. Longer prenyl pyrophosphates also retained bioactivity. Despite differences in CDR3 sequence, Vgamma2Vdelta2(+) clones and a transfectant responded similarly. Ag docking into a Vgamma2Vdelta2 TCR model reveals a potential binding site in germline regions of the Vgamma2Jgamma1.2 CDR3 and Vdelta2 CDR2 loops. Thus, Vgamma2Vdelta2(+) T cells recognize a core carbon chain and pyrophosphate moiety. This recognition is relatively unaffected by additions at distal positions to the core Ag unit.  相似文献   

7.
8.
The effect of carbamoylation with alkyl isocyanate was used both to monitor the stability of the isocyanates and to study the influence of charge modification on protein assay. Carbamoylation of poly (L-lysine) with methyl isocyanate, ethyl isocyanate and 2-chloroethyl isocyanate was observed to decrease binding of methyl orange. The data emphasized the lability of alkyl isocyanates and indicated the importance of preparing aqueous solutions at low temperatures for studies on protein carbamoylation. After carbamoylation of several proteins, there was decreased metachromasia on binding to Coomassie Blue G. Poly (L-lysine) and H1 histone showed anomalous behavior in that with low concentrations of Coomassie Blue G the metachromasia was increased by carbamoylation, but at high concentrations of the dye the metachromasia was decreased by carbamoylation. In contrast to some reports in the literature, the data indicated that there is not always a simple relationship between the positive charge on a protein and the interaction with anionic dyes.  相似文献   

9.
RAF kinase inhibitors can induce ERK cascade signaling by promoting dimerization of RAF family members in the presence of oncogenic or normally activated RAS. This interaction is mediated by a dimer interface region in the RAF kinase domain that is conserved in members of the ERK cascade scaffold family, kinase suppressor of RAS (KSR). In this study, we find that most RAF inhibitors also induce the binding of KSR1 to wild-type and oncogenic B-RAF proteins, including V600E B-RAF, but promote little complex formation between KSR1 and C-RAF. The inhibitor-induced KSR1/B-RAF interaction requires direct binding of the drug to B-RAF and is dependent on conserved dimer interface residues in each protein, but, unexpectedly, is not dependent on binding of B-RAF to activated RAS. Inhibitor-induced KSR/B-RAF complex formation can occur in the cytosol and is observed in normal mouse fibroblasts, as well as a variety of human cancer cell lines. Strikingly, we find that KSR1 competes with C-RAF for inhibitor-induced binding to B-RAF and, as a result, alters the effect of the inhibitors on ERK cascade signaling.  相似文献   

10.
Photosensitisers are the photoactive molecules used in photodynamic therapy (PDT) of cancer. Despite the importance of their interaction with polypeptides, only the binding to plasma proteins has been investigated in some detail. In our study we compared the binding of Protoporphyrin IX (a clinically useful photosensitiser) to an immunoglobulin G, with the binding to albumins. Binding to IgG is relevant because a possible method of increasing tumour specificity of photosensitisers is to bind them to tumour-specific antibodies. Binding constants to albumins and the immunoglobulin were comparable ( congruent with6 x 10(-6) M(-1)). The apparent number of PPIX molecules bound to each protein was also within a similar range (from 4 to 7). The absence of a shift in the emission spectrum of PPIX bound to IgG, however, indicates that either larger aggregates of PPIX bind to the immunoglobulin or that the binding site leaves PPIX exposed to the buffer. We observed that PPIX photoproducts compete with PPIX for the same binding sites. The number of PPIX molecules bound to each protein in the presence of photoproducts decreased by 50-80%. Due to the spectral overlap between PPIX and its photoproducts, the binding in the presence of photoproducts was investigated using Derivative Synchronous Fluorescence Spectroscopy (DSFS) to improve the spectral separation between chromophores in solution. We also concluded that fluorescence measurements underestimate the number of PPIX molecules binding each protein. In fact, non-linear Scatchard plots (in the case of albumin binding) by definition yield a minimum number of molecules attached to a protein. Moreover, the binding of large aggregates, formed by an unknown number of PPIX molecules, to IgG results in the underestimate of the number of molecules bound. The number of PPIX molecules bound to these proteins is also much larger than the number of sites estimated by protein fluorescence quenching.  相似文献   

11.
Effects of DNA binding proteins on DNA methylation in vitro   总被引:1,自引:0,他引:1  
The inheritance of DNA methylation patterns may play an important role in the stability of the differentiated state. We have therefore studied the inhibitory effects of DNA binding proteins on DNA methylation in vitro. Mouse L1210 cells grown in the presence of 5-azacytidine acquire hemimethylated sites in their DNA. Purified hemimethylated DNA accepted methyl groups from S-adenosyl-L-methionine in the presence of a crude maintenance methylase more readily than purified DNA isolated from cells not exposed to 5-azacytidine. On the other hand, chromatin fractions isolated from cells grown in the presence or absence of 5-azacytidine were poor substrates for the maintenance methylase irrespective of the number of hemimethylated sites present in the DNA. Inhibition of DNA methylation was shown to be associated primarily with chromatin proteins bound to DNA, and trypsinization of nuclei increased their methyl accepting abilities. Methyl acceptance was increased by salt extraction of chromosomal proteins. These data suggest that association of histones with DNA may play a role in the modulation of methylation patterns.  相似文献   

12.
Burak Erman 《Proteins》2015,83(5):805-808
Binding of a ligand on a protein changes the flexibility of certain parts of the protein, which directly affects its function. These changes are not the same at each point, some parts become more flexible and some others become stiffer. Here, an equation is derived that gives the stiffness map for proteins. The model is based on correlations of fluctuations of pairs of points in proteins, which may be evaluated at different levels of refinement, ranging from all atom molecular dynamics to general elastic network models, including the simplest case of isotropic Gaussian Network Model. The latter is used, as an example, to evaluate the changes of stiffness upon dimerization of ACK1. Proteins 2015; 83:805–808. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of <1:2. At higher molar ratios, it inhibited the reactions by up to 80%. The inhibition was caused by binding of translin to the primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations.  相似文献   

14.
Extensive protease digestion of delipidated [3H]mevalonate (MVA)-labeled proteins, followed by HPLC separation of the products, is one approach to identify and study prenyl cysteines. Using this methodology three major [3H]MVA-labeled peaks appeared. Two of them represent farnesyl cysteine (FC) and geranylgeranyl cysteine (GGC). The third peak represents unknown products that are considerably more hydrophobic than FC and GGC, here designated HPC. Previously, we provided evidence that cysteine residues may also be modified by dolichyl groups. Dolichyl cysteines (DolC) belong to HPC. However, as shown in the present study, DolC only represents a minor portion of HPC. Data obtained from different sets of experiments, including [3H]GGOH-labeling and use of prenyl transferase inhibitors, suggest that HPC mainly involves CXC or CC residues with double-linked GG groups. In turn this points to the possibility that proteins modified by double GG groups are quite common, and may probably involve other proteins than the rab family of GTPases.  相似文献   

15.
Monoclonal antibodies against two olfactory mucosal proteins, one with affinity for anisole-like and the other for benzaldehyde-like compounds, were applied to mouse olfactory epithelium. Responses to three odorants (anisole, benzaldehyde and amyl acetate) were measured. Of 26 antibodies, three (12%) inhibited responses only to the odorant with affinity for the antigen, nine (35%) inhibited responses to all three odorants, and 14 (54%) were without effect. None reduced responses by as much as 50%. The data support the hypothesis that there is a class of related proteins in olfactory neuronal cell membranes that function as receptor molecules and that other mechanisms also mediate odorant stimulation.  相似文献   

16.
Understanding the effects of thin and thick filament proteins on the kinetics of Ca(2+) exchange with cardiac troponin C is essential to elucidating the Ca(2+)-dependent mechanisms controlling cardiac muscle contraction and relaxation. Unlike labeling of the endogenous Cys-84, labeling of cardiac troponin C at a novel engineered Cys-53 with 2-(4'-iodoacetamidoanilo)napthalene-6-sulfonic acid allowed us to accurately measure the rate of calcium dissociation from the regulatory domain of troponin C upon incorporation into the troponin complex. Neither tropomyosin nor actin alone affected the Ca(2+) binding properties of the troponin complex. However, addition of actin-tropomyosin to the troponin complex decreased the Ca(2+) sensitivity ( approximately 7.4-fold) and accelerated the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 2.5-fold). Subsequent addition of myosin S1 to the reconstituted thin filaments (actin-tropomyosin-troponin) increased the Ca(2+) sensitivity ( approximately 6.2-fold) and decreased the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 8.1-fold), which was completely reversed by ATP. Consistent with physiological data, replacement of cardiac troponin I with slow skeletal troponin I led to higher Ca(2+) sensitivities and slower Ca(2+) dissociation rates from troponin C in all the systems studied. Thus, both thin and thick filament proteins influence the ability of cardiac troponin C to sense and respond to Ca(2+). These results imply that both cross-bridge kinetics and Ca(2+) dissociation from troponin C work together to modulate the rate of cardiac muscle relaxation.  相似文献   

17.
CAP binding proteins associated with the nucleus.   总被引:15,自引:5,他引:10       下载免费PDF全文
E Patzelt  D Blaas    E Kuechler 《Nucleic acids research》1983,11(17):5821-5835
Cap binding proteins of HeLa cells were identified by photo-affinity labelling using the cap analogue gamma-[32P]-[4-(benzoyl-phenyl)methylamido]-7-methylguanosine-5'- triphosphate. Photoreaction with whole cell homogenates resulted in specific labelling of five major polypeptides. The small molecular weight polypeptide appeared to be identical to the 24 000 to 26 000 dalton cap binding protein previously identified in initiation factors. A cap binding protein of 37 000 dalton was found in initiation factors as well as in preparations of crude nuclei. It was released from nuclei by washing with buffer of moderate salt concentration. Three high molecular weight cap binding proteins (approximately 120 000, approximately 89 000, approximately 80 000 dalton) were found in the nuclear fraction and were only partly released upon nuclease digestion and high salt extraction.  相似文献   

18.
The biochemical mechanism(s) by which Nm23 proteins/nucleoside diphosphate kinases suppress tumor metastasis, inhibit cell motility, and affect cellular differentiation are not known. Here we report that Nm23 proteins can phosphorylate geranyl and farnesyl pyrophosphates to give triphosphates. Wild type Nm23-H1 had higher geranyl and farnesyl pyrophosphate kinase activities than did mutants of Nm23-H1 that do not inhibit cell motility. The phosphorylation of farnesyl pyrophosphate appears to occur in vivo as cells with an elevated level of Nm23-H1 contained more farnesyl triphosphate than did control cells. To our knowledge, this is the first report that farnesyl triphosphate exists in cells. The phosphorylation of farnesyl pyrophosphate by Nm23 proteins could alter isoprenoid metabolism, and cells with an elevated level of Nm23 proteins were found to contain more farnesylated 46- and 24-kDa proteins than did control cells. The phosphorylation of geranyl and farnesyl pyrophosphates by Nm23 proteins provides a novel mechanism by which these proteins might exert their biological effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号