首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anterior pituitary glands from ovulating Japanese quail (Coturnix coturnix) were used to investigate variation in sensitivity to chicken luteinizing hormone-releasing hormone (cLHRH I; Gln8-LHRH). Grouping the pituitaries by ovulatory stage provided preliminary evidence of changes in sensitivity to LHRH during the ovulatory cycle. Pituitaries taken from quail before the preovulatory LH surge were responsive to cLHRH I, while pituitaries from the other times of the cycle showed minimal response to cLHRH I. Female pituitary glands release less LH than those of males. These data indicate a change in sensitivity to LHRH in the female quail that may be due to changes in gonadal steroids or the pool of releaseable LH from the pituitary.  相似文献   

2.
The luteinizing hormone (LH)-releasing activity of two distinct chicken luteinizing hormone releasing hormones ([Gln8]-LHRH and [His5, Trp7, Tyr8]-LHRH) were evaluated in white Leghorn cockerels. In the first study, thirty birds were randomly allotted to five groups and injected, i.v., with 0.9% saline, [Gln8]-LHRH (cLHRH I, 1 microM or 10 microM) or [His5, Trp7, Tyr8]-LHRH, (cLHRH II; 1 microM or 10 microM). Blood samples were drawn prior to and through 60 min following the injection, and plasma was collected for LH determination. In the second study, anterior pituitary cells from cockerels were dispersed and preincubated for 1 hr. Approximately 1.5 X 10(5) cells per tube were incubated with either Medium 199 buffer (control), 8-bromo-cAMP or various doses of cLHRH I or cLHRH II at final concentrations ranging from 0.02 to 100.0 nM. At the end of a two hour incubation, supernatant was collected and the concentration of LH determined. Injection of cLHRH I or cLHRH II at 1 microM and 10 microM levels caused a significant increase in blood LH concentrations which peaked 5 min following injection. There were, however, no differences between the stimulatory effect of cLHRH I compared to cLHRH II at either dose. On the other hand, cLHRH II was found to be 4.7 times more potent than cLHRH I in stimulating LH release from dispersed pituitary cells. It is suggested that cLHRH II may have greater affinity for the gonadotroph receptor, greater uptake by the cell, and/or that it may be more resistant to in vitro degradation than cLHRH I. On the other hand, an extra pituitary site of degradation may be more effective in metabolizing cLHRH II, resulting in its equipotency with cLHRH I, in vivo.  相似文献   

3.
Biological properties of homogeneous solutions of chicken (c) and mammalian (m) LHRH were compared by their ability to release LH, in vitro, from a rooster pituitary cell incubation system. Homogeneity of the two LHRH species was confirmed by High Performance Liquid Chromatography (HPLC) using linear gradients of acetonitrile and phosphate buffer. A clear HPLC separation of [Gln8]-LHRH ( cLHRH ) and [Arg8]-LHRH ( mLHRH ) was obtained, with the former having a consistently longer retention time than the latter. cLHRH cause a greater (p less than .025) in vitro release of LH at low doses (less than 1 ng/2 X 10(5) live pituitary cells), but not at high doses (greater than 10 ng/2 X 10(5) live pituitary cells), than that caused by mLHRH . Our results indicate that rooster pituitary cells are significantly more sensitive to low doses of cLHRH than to similar doses of mLHRH , when assessed by their ability to release LH in vitro.  相似文献   

4.
Naloxone produces large increases in serum luteinizing hormone (LH) levels in normal males and females, supporting a role for endogenous opioids (EOP) in the tonic inhibition of LH. Since the antagonist apparently exerts no important effects on the pituitary, the reasonable assumption has been made that it elevates gonadotropin levels by affecting the release of LH-releasing hormone (LHRH) from the hypothalamus. However, at present there is no direct in vivo evidence supporting this widely-held view. In an attempt to directly demonstrate that naloxone increases the secretion of LHRH, and thereby elevates serum LH levels, we examined whether a potent synthetic antagonist of LHRH ( [D-p Glu1, D-Phe2, D-Trp3,6]-LHRH, GPT-LHRH) blocked the effects of naloxone in male rats with a normal response to naloxone and in those with a markedly enhanced sensitivity to the drug induced by a brief period of morphine pellet implantation. Our results demonstrated that GT-LHRH antagonized equipotent doses of LHRH (100 ng/kg) and naloxone (0.5 mg/kg) over a similar time course with approximately the same AD50. Most importantly, however, we showed that the GPT-LHRH produced equivalent, parallel shifts to the right in the dose-response curves for LHRH and naloxone, indicative of competitive inhibition. We also found that GPT-LHRH completely abolished the enhanced response to naloxone's effects on LH which occurs in morphine-pretreated rats. Since we observed no competition between LHRH and naloxone for their binding sites in pituitary or brain, the only viable interpretation of our results is that naloxone increases LH by inducing the release of LHRH.  相似文献   

5.
Pituitary responsiveness to exogenous LHRH was studied in vivo and in vitro in the female red fox, a mono-oestrous species. In vivo, the ability of the pituitary to release LH in response to a single injection of LHRH (2 micrograms/kg) was determined at various stages of the reproductive cycle. The greatest responsiveness is observed during the preovulatory period, the lowest during the luteal phase. During the anoestrus phase, the responsiveness is reduced by more than 50% in lactating females compared to non lactating females. In vitro, dispersed fox anterior pituitary cells were exposed four times to LHRH (10(-9) M), hourly, for 8 min. Pituitary cells were taken from lactating and non lactating females. The cells are not sensitive to LHRH in lactating females but become more and more sensitive after weaning. It is suggested the inhibitory influence of lactation could be the result of prolactin-ovarian steroids-gonadotrophins interactions.  相似文献   

6.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

7.
The sequences of four naturally occurring luteinizing hormone releasing hormones (LHRH's) differ only in positions 5, 7 and 8. Salmon and chicken II LHRH's have Trp7; porcine/ovine (P/O) and chicken I LHRH's have Leu7. The receptor for P/O LHRH might effectively bind certain antagonists with Trp7. Thirteen antagonists having Trp7 and eight antagonists with other substitutions in position 7 were synthesized. One of the thirteen antagonists with the natural Trp7, [N-Ac-D-2-Nal1,D-pClPhe2,D-3-Pal3,D-Arg6,Trp7,D- Ala10]-LHRH, not only maintained activity, but had increased potency (ca. 58%; 90% antiovulatory activity/250 ng; rats) in comparison with the companion analog with the natural Leu7 of P/O LHRH. The other twelve Trp7-antagonists had lower potency.  相似文献   

8.
Summary After an exposure of 24 h to synthetic LHRH (100 ng/ml) in vitro, the anterior pituitaries of 4-day-old rats show a notable loss of immunoreactive material in most LH cells in males, but not in females. When radioimmunoassayed without incubation, the pituitary LH content of 4-day-old female rats is 2.8 times higher than that of males of the same age. LHRH treatment stimulates a higher rate of LH discharge in females than in males, but if LH release is expressed as a percentage of the initial pituitary LH content, there is no apparent difference. In both sexes, more than 70% of the initially stored LH is discharged into the medium after 24 h of LHRH stimulation. In males, this discharge produces a pronounced depletion, but in females, the pituitary still contains 78.2% of the initial LH content despite the large amount of hormone released.From these results, it is concluded that in newborn rats the LH synthetic rate in females is higher than that in males. This high synthetic activity, together with the large store of LH, may explain why prolonged LHRH treatment fails to cause LH depletion in females. At 4 days of age LHRH had no stimulatory effect on pituitary synthesis of LH in either sex.  相似文献   

9.
K Kato  M R Sairam 《Life sciences》1983,32(3):263-270
The effect of luteinizing hormone releasing hormone (LHRH) and its analogs on the release of FSH and LH by 20 day old whole mouse pituitary incubated in vitro for 3-4 hrs was investigated. Three agonistic analogs (AY 25650, 25205 and Buserelin) all of which are reported to be superactive in vivo showed approximately the same potency in this in vitro test system. Preincubation of the pituitaries for 1 h with the antagonistic analogs [Ac Dp Cl Phe1,2, D Trp3, D Phe6, D Ala10] LHRH and [Ac Dp Cl Phe1,2, D Trp3, D Arg6, D Ala10] LHRH inhibited the secretion of LH and FSH induced by 2.5 x 10(-9)M LHRH. The inhibitory response was dose dependent. The continued presence of the antagonists was not required for effective suppression of the LHRH effect. Experiments designed to find out the minimum time required for eliciting suppression of LHRH revealed that preincubation of the pituitary with the second antagonist for 5 mins followed by removal was adequate to produce effective inhibition of gonadotropin release. At lower doses of the antagonist, LH release was more effectively inhibited than FSH release. The results suggest that antagonistic analogs can effectively bind to LHRH receptors in the whole pituitary incubation preventing the subsequent action of LHRH. With the present incubation system assessment of bioactive LH and FSH release is possible within 24 hrs.  相似文献   

10.
Isolated pituitary cells from metestrous, ovariectomized (OVX), and ovariectomized-estradiol treated (OVX-EB) rats were employed to study the gonadotropin response to luteinizing hormone-releasing hormone (LHRH) challenge and to quantitate LHRH receptors, using a labeled LHRH analog. Ovariectomy (3–4 weeks post castration) resulted in a reduction of LHRH receptor concentration from 34.4 ± 2.1 in metestrous females to 14.3 ± 0.9 fmoles/106 cells. Concomitantly, the luteinizing hormone (LH) response to a near-maximal dose of LHRH (5 ng/ml) decreased from a 3-fold stimulation in intact females to 1.13-fold stimulation in cells from OVX rats. Replacement therapy with EB (50 ug/rat for 2 days) to OVX rats restored LH response and LHRH binding sites (a 2.5-fold stimulation in LH secretion and 32.0 ± 2.1 fmoles/106 cells, respectively). The LH response to LHRH stimulation was not altered after one day of EB treatment although the number of LHRH binding sites was increased. The changes in the number of LHRH binding sites were not accompanied by any alterations in the affinity of the LHRH analog (Kd ? 0.5 × 10?9M). It is concluded that variations in LHRH receptor number reflect the degree of pituitary sensitivity to LHRH and it may suggest that LHRH and estradiol modulation of gonadotropin release is mediated by these receptors.  相似文献   

11.
A convenient method for evaluating the biological activity of luteinizing hormone-releasing hormone (LHRH) antagonists was devised. Pregnant mare's serum gonadotropin (PMSG) treatment of immature rats is known to stimulate follicular growth and estrogen production, that in turn stimulates the release of LHRH which triggers an ovulatory discharge of luteinizing hormone (LH) from the pituitary. The present bioassay of the antagonists is based on the inhibition of ovulation in the PMSG-treated rats. Twenty-eight-day-old Sprague Dawley rats maintained under a light period of 12 h/day (lights on at 0630 h) were given 10 IU of PMSG s.c. at 0930 h. On Day 30 of age the antagonist was given s.c. at 1430 h. The rats were killed on the following morning and the oviducts examined for the presence of ova. In addition, the antagonists were compared in their ability to inhibit serum testosterone levels in adult male rats. In the PMSG-treated rats the order of ovulation-inhibiting potency of the following antagonists was: [Ac-D-NAL(2)1,4FD-Phe2,D-Trp3,D-Arg6]-LHRH (LHRH-1) greater than [Ac-delta 3 Pro1,4FD-Phe2,D-NAL(2)3.6]-LHRH (LHRH-2) greater than [Ac-delta 3 Pro1,4FD-Phe2,D-Trp3,6]-LHRH (LHRH-3). The order of potency was confirmed by their antitesticular effects in adult male rats.  相似文献   

12.
Our aim was to identify age-related changes in the dynamics of luteinizing hormone (LH) release that may contribute to the decline in pituitary sensitivity to luteinizing hormone-releasing hormone (LHRH) during sexual maturation of female rats. We studied LHRH-stimulated LH secretion curves of superfused pituitaries from rats ranging in age from 10 days to the first estrous cycle. Pituitary fragments were exposed for 10 min to medium alone or to medium plus LHRH; incubation continued in medium alone for 130 min and effluent was collected for LH analysis. Secretion curves were compared on the basis of total secretion (area under the curve), maximal change in LH secretion rate, and rates of rise and decay of the curves. The data show that total LH secretion in response to LHRH is greatest in 15-, 20-day-old and first-proestrus animals. Also, the maximal change in LH secretion rate was greater, and the increase in LH secretion rate faster in younger animals than in 30-day-old animals. Analysis of secretory granules in LH-containing gonadotropes of 15- and 30-day-old animals revealed changes in he granule population with age. We conclude that younger animals respond faster with a greater LH secretion response to LHRH than do 30-day-old or first-estrus animals, and that these age-related changes in the dynamics of LH secretion may be due in part to maturation of the LH secretory granules.  相似文献   

13.
Monolayer cultures of anterior pituitary cells from male or female pigs of 60, 80, 105 days of fetal life or of 60, 160 and 250 days of post-natal life were prepared and treated with LHRH (1 pM to 10 nM). Dose-related increases of LH were first seen at 80 days of gestation in both sexes, while only female fetuses responded to maximal LHRH at 60 days. Basal and stimulated LH release doubled in cultures from 105-day-old fetuses when compared with those at 80 days. Compared to late fetal stages LH release was 20- to 30-fold higher in cell cultures from 60-day-old (post-natal) donors without further change during the post-natal period. In all pre- and post-natal age groups basal and maximal LH release of pituitary cells from males was lower than that of females. FSH stimulation started in male and female cells at 80 days of gestation only at LHRH concentrations exceeding or equal to 0.1 nM. By 105 days FSH secretion was dose-related and pituitary cells of females responded with higher FSH values than did those of males. In general, post-natal cells released much higher amounts of FSH than did prenatal cells. Basal and maximal release of FSH decreased during post-natal development in both sexes. Basal as well as maximal FSH release of cultures from female donors was higher than that found in cultures from male donors. Determination of total LH and FSH content in fetal pituitary cell cultures indicated that the developmental increase in gonadotrophin release potential is a function of the total gonadotrophin content in vitro. We conclude that (1) the in-vitro release of gonadotrophins to LHRH is dose-, age- and sex-dependent; (2) in the female fetal pig LH responsiveness develops earlier than FSH responsiveness; (3) apparently, these maturational changes mainly reflect alterations in pituitary gonadotrophin content; and (4) there is no simple relationship between in-vitro release and circulating gonadotrophins.  相似文献   

14.
The influence of testosterone, luteinizing hormone releasing hormone (LHRH) agonist and combinations of these hormones on gonadotropic hormone (GtH) levels in the sexually immature trout was investigated. Both the steroid and releasing hormone preparations, testosterone in Silastic capsules and cholesterol-pelleted LHRH-A, were formulated for sustained release and long-term biological action following a single hormone implantation. Marked increases in pituitary GtH followed testosterone and/or testosterone and LHRH analogue treatment combined, but the low pituitary GtH level in controls remained unchanged after LHRH analogue administration alone. Plasma GtH titers increased with time after testosterone treatment, indicating a positive steroid feedback effect by androgen on GtH in the juvenile rainbow trout. When combined with testosterone treatment, LHRH analogue augmented plasma GtH levels compared to fish receiving testosterone treatment alone. In males the elevated plasma GtH levels were associated with testes stimulation and onset of spermatogenesis; in females, however, no significant stimulation of the ovaries was observed. It can be concluded from these studies that the testosterone stimulus is sufficient to induce onset of sexual development in immature males but not females. Whereas LHRH analogue releases GtH from the testosterone-primed trout pituitary, LHRH treatment alone under these conditions fails to stimulate the juvenile trout reproductive system.  相似文献   

15.
16.
This study used pituitary cells in culture firstly to test the hypothesis that NPY may augment the pituitary LH response to LHRH and secondly to determine whether this interaction is dependent on the presence of estradiol. LHRH (10(-10)-10(-6) M) caused a significant increase in LH secretion from dispersed ovine pituitary cells maintained in culture for six days, a response which was enhanced when cells were pretreated for three days with 4 x 10(-11) M estradiol. NPY 10(-10)-10(-6) M) had no effect on basal LH release from ovine pituitary cells maintained either in the presence or absence of estradiol. NPY (10(-10) and 10(-8) M) also had no effect on LHRH-stimulated LH release either in the presence or absence of estradiol. These results substantiate previous observations that physiologically relevant concentrations of estradiol enhance the LH response to LHRH in cultured ovine pituitary cells. However, in contrast to experiments carried out using rat pituitary cells in culture, the present data provide no evidence to support the hypothesis that NPY alone interacts with LHRH in the control of LH secretion from the ovine pituitary gland.  相似文献   

17.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

18.
Luteinizing hormone (LH) secretory patterns were characterized in adult male and female rats exposed to ethanol during the last week of fetal life. Gonadectomized fetal alcohol exposed (FAE) males and females had significantly reduced plasma LH titers as compared to those of pair-fed (PF) controls. The phasic afternoon LH secretory response to estrogen and progesterone priming was also significantly reduced in FAE females. These differences do not appear to be a result of altered pituitary sensitivity to luteinizing hormone releasing hormone (LHRH), since the infusion of LHRH resulted in an equal response in PF and FAE females. Subsequent characterization of the episodic pattern of LH secretion in FAE males revealed significantly reduced mean LH level as well as a decreased pulse amplitude and frequency when compared to PF males. Taken together, these data indicate that some of the central mechanisms controlling pituitary LH secretion are altered by prenatal exposure to alcohol.  相似文献   

19.
We report that the two classes of regulatory neuropeptides, neuropeptide Y (NPY) and endogenous opioid peptides (EOP), modulate luteinizing hormone (LH) release in diverse fashion in gonad-intact rats. Each neuropeptide acts at two loci, the hypothalamus and pituitary, to excite (NPY) or inhibit (EOP) LH release. At the hypothalamic level, NPY stimulates luteinizing hormone releasing hormone (LHRH) release, a response mediated by alpha 2-adrenoreceptors and amplified in the presence of adrenergic agonists. At the pituitary level, NPY acts in concert with LHRH to amplify the LH response. In contrast, EOP inhibit LHRH release by decreasing the supply of excitatory adrenergic signals in the vicinity of LHRH neurons in the preoptic-tuberal pathway, and at the pituitary level, they decrease LH release in response to LHRH. Further, the gonadal steroidal milieu facilitates NPY neurosecretion and postsynaptic expression of NPY in concert with adrenergic system; a similar clear-cut facilitatory effect of gonadal steroids on EOP secretion is not yet obvious. Our additional studies imply that the EOP system has the potential to increase sensitivity towards gonadal steroids and that to induce the preovulatory LH surge the neural clock may decrease the inhibitory EOP tone prior to the critical period on proestrus. This antecedent neural event allows the excitatory adrenergic and NPY signals to evoke LHRH secretion at a higher frequency approximating that seen in ovariectomized rats. Further studies are under way to delineate the steroid-induced subcellular events that integrate the action of these regulatory peptides in the control of the episodic LHRH secretion pattern which sustains basal and cyclic gonadotropin release in the rat.  相似文献   

20.
Acute changes of bovine pituitary luteinizing hormone-releasing hormone (LHRH) receptors in response to steroid challenges have not been documented. To investigate these changes 96 ovariectomized (OVX) cows were randomly allotted to one of the following treatments: 1) 1 mg estriol (E3); 2) 1 mg 17 beta-estradiol (E2); or 3) 25 mg progesterone (P) twice daily for 7 days before 1 mg E2 and continuing to the end of the experiment. Serum was collected at hourly intervals from 4 animals in each group for 28 h following estrogen treatment. Four animals from each treatment were killed at 4-h intervals from 0 to 28 h after estrogen injection to recover pituitaries and hypothalami. Treatment with E3 or E2 decreased serum luteinizing hormone (LH) within 3 h and was followed by surges of LH that were temporally and quantitatively similar (P greater than 0.05). Progesterone did not block the decline in serum LH, but did prevent (P less than 0.05) the E2-induced surge of LH. Serum follicle-stimulating hormone (FSH) was unaffected (P less than 0.05) by treatment. Pituitary concentrations of LH and FSH were maximal (P less than 0.001) at 16 h for E3 and 20 h for E2, whereas P prevented (P greater than 0.05) the pituitary gonadotropin increase. Concentrations of LHRH in the hypothalamus were similar (P greater than 0.05) among treatments. Pituitary concentrations of receptors for LHRH were maximal (P less than 0.005) 12 h after estrogen injection (approximately 8 h before the LH surge), even in the presence of P. This study demonstrated that in the OVX cow: 1) E2 and E3 increased the concentration of receptors for LHRH and this increase occurred before the surge of LH; and 2) P did not block the E2-induced increase in pituitary receptors for LHRH but did prevent the surge of LH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号