首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.  相似文献   

2.
This study investigates an innovative dechlorination process using anaerobic granular sludge that was partially exposed to oxygen. The exposure supported a synchronously anaerobic and aerobic bioconversion process that combined reductive dechlorination with aerobic co-oxidation in a sludge granule. Experimental results showed that the highest dechlorination rates of tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride were 6.44, 2.98, 1.70 and 0.97 nmol/gVS day, at initial O2 concentrations of 10, 100, 5 and 0%, respectively. Strictly anaerobic conditions favored the dechlorination of vinyl chloride while absolutely aerobic conditions were preferred for trichloroethene dechlorination. Microaerophilic conditions are suggested to ensure the overall biodegradation of the chlorinated ethenes present in groundwater as a mixture.  相似文献   

3.
Summary The co-culture between Methylosinus sporium, a strictly aerobic methanotroph, and strictly anaerobic methanogens was studied in 5 L aerobic/anaerobic coupled granular sludge reactors under O2-limited conditions. The methanogenic bacteria maintained very good metabolic activities and were able to produce sufficient methane which serviced as substrate for methanotrophic growth. Although other strictly aerobic population proliferated by two orders of magnitude after the granular sludge had been operated under O2-limited conditions for one month, only a limited amount of the added methanotroph remained in the sludge. This result may indicate that M. sporium lacks sufficient O2 affinity to compete with facultative bacteria for the dissolved O2 for their growth.  相似文献   

4.
Joubert  W. A.  Britz  T. J. 《Microbial ecology》1987,13(2):159-168
Fifty-two aerobic and facultative anaerobic and 57 anaerobic bacterial isolates were obtained from an acidogenic phase digestion system. These isolates were characterized and the similarities between the different strains were calculated using Sokal and Michener's similarity coefficient. The aerobic and facultative anaerobic strains clustered in two major groups with the strains of the first main group being gram-negative fermentative rods, representing the generaKlebsiella, Enterobacter, Escherichia andAeromonas. Isolates of the second group were gram-positive streptococci similar toStreptococcus lactis. The strict anaerobic isolates also clustered into two main groups with strains of cluster A being identified as members of the genusFusobacterium while strains in cluster B were members of the genusBacteroides. Hypothetical mean organisms were calculated for each cluster and used in further culture studies. The major products of the continuously fed acidogenic phase reactor were ethanol and acetic, propionic, and butyric acids. In batch cultures, ethanol, acetic acid, diacetyl, and 2,3-butanediol were formed by the strains as major products both under aerobic and anaerobic conditions. The ability of the aerobic and facultative anaerobic strains to be metabolically active under anaerobic conditions indicates a prominent role in acidogenic reactors.  相似文献   

5.
An anaerobic granular sludge was enriched to utilize H2/CO2 in a continuous gas-fed up-flow anaerobic sludge reactor by applying operating conditions expected to produce acetic acid, butyric acid, and ethanol. Three stages of fermentation were found: Stage I with acetic acid accumulation with the highest concentration of 35 mM along with a pH decrease from initial 6 to 4.5. In Stage II, H2/CO2 was replaced by 100% H2 to induce solventogenesis, whereas butyric acid was produced with the highest concentration of 2.5 mM. At stage III with 10 µM tungsten (W) addition, iso-valeric acid, valeric acid, and caproic acid were produced at pH 4.5–5.0. In the batch tests inoculated with the enriched sludge taken from the bioreactor (day 70), however, methane production occurred at pH 6. Exogenous 15 mM acetate addition enhanced both the H2 and CO2 consumption rate compared to exogenous 10, 30, and 45 mM acetate by the enriched sludge. Exogenous acetate was failed to be converted to ethanol using H2 as electron donor by the enriched acetogens.  相似文献   

6.
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method.  相似文献   

7.
Summary Nitrogen fixation in the natural, Agropyron-Koeleria grassland ecosystem was studied using the C2H2-C2H4 and N15 assays. Small soil samples and also undisturbed soil cores were used for analyses. Both techniques indicated that grassland and associated cultivated soils had low fixation rates (0.6–1.8 kg/ha per 28 days in the laboratory and, 1 kg/ha per season under actual field conditions). Algal colonies (Nostoc spp.) on the soil surface were active fixers when the surface of the grassland was moist. However, their small biomass limits the extent of fixation in most areas. In native grassland, 16 legumes bore nodules. The three most common speciesVicia americana, Thermopsis rhombifolia andOxytropis sericea, all of which had active nodules, contributed 10 per cent of the total nitrogenase activity. The non-legumesElaeagnus commutata andShepherdia argentea were profusely nodulated with active nodules, but were confined to specific habitats. No nodules were found onArtemisia orOpuntia spp. The major, heterotrophic, asymbiotic bacteria in the soil were clostridia. These utilize substrates produced by aerobic cellulose and hemicellulose degrading organisms to fix N in anaerobic microsites. The C2H2:N2 reduction ratio was 3 to 1 in large, aerobic core samples, but was greater under water-logged conditions where high fixation rates occurred.  相似文献   

8.
For Hyphomicrobium 53-49 capable of growing under various conditions, aerobic methanol, anaerobic methanol (with denitrification), autotrophic (H2-O2-CO2), aerobic ethanol and aerobic acetate, investigation and comparison of the specific activities of the following enzymes were performed: alcohol dehydrogenase (NAD-ethanol linked and NAD-methanol linked), primary alcohol dehydrogenase, formaldehyde dehydrogenase (NAD-GSH linked and DCPIP linked), formate dehydrogenase, serine hydroxymethyl transferase, hydroxypyruvate reductase, isocitrate lyase (icl), malate lyase, malate dehydrogenase, ribulosebisphosphate (RuBP) carboxylase, phos-phoenolpyruvate (PEP) carboxykinase (ADP linked), PEP carboxylase (phosphorylating), pyruvate carboxylase (NADH linked and NADPH linked) and α-ketoglutarate carboxylase (NADH linked and NADPH linked). On the basis of the data obtained, it was concluded that during growth on methanol, aerobically and anaerobically, the icl+ serine pathway operated, while during autotrophic growth on H2-O2-CO2, CO2 was incorporated through the RuBP pathway and others, and during growth on ethanol or acetate, neither the serine pathway nor the RuBP pathway operated. The organism changed its metabolism through the regulation of the metabolic enzymes according to the growth conditions.  相似文献   

9.
From granular sludge of an upflow anaerobic sludge bed (UASB) reactor treating paper-mill wastewater, a sulfate-reducing bacterium (strain ASRB1) was isolated with acetate as sole carbon and energy source. The bacterium was rod-shaped, (1.4–1.9×2.5–3.4 μm), nonmotile, and gram-negative. Optimum growth with acetate occurred around 37°C in freshwater medium (doubling time: 3.5–5.0 days). The bacterium grew on a range of organic acids, such as acetate, propionate, and butyrate, and on alcohols, and grew autotrophically with H2, CO2 and sulfate. Fastest growth occurred with formate, propionate, and ethanol (doubling time: approx. 1.5 days). Strain ASRB1 clusters with the delta subdivision of Proteobacteria and is closely related toSyntrophobacter wolinii a syntrophic propionate oxidizer. Strain ASRB1 was characterized as a new genus and species:Desulforhabdus amnigenus.  相似文献   

10.
Enhanced biological phosphorus removal was performed in a continuous laboratory-scale two-reactor system with sludge recirculation over a 75-day period. Influent wastewater was a synthetic medium based on acetate, and the sludge age was kept at 12 days. The adapted sludge stored poly-β-hydroxyalkanoic acids (PHA) in the anaerobic reactor with a conversion ratio of 1.45 PHA/acetic acid (based on chemical O2 demand: COD/COD) and gave ratio of a phosphate-P release to acetic acid uptake of 0.51 P/CH3COOH (w/w). Fractionation of anaerobic and aerobic sludges showed that the main part of phosphorus taken up, was eluted in the trichloroacetic acid fraction indicating that it was polyphosphate. A total of 60% of the phosphorus in the aerobic sludge was solubilized in the trichloroacetic acid fraction, whereas this fraction accounted for only 32% of the phosphorus in the anaerobic sludge. Only 4% of the total phosphorus in the aerobic sludge and 2% in the anaerobic sludge was found in the EDTA fraction, indicating low amounts of metal-bound phosphates. Isolation on acetate-based agar medium showed that Acinetobacter strains were present in the sludge. However, a more complete analysis of the bacterial community of the sludge was obtained by creating a clone library based on the 16S rRNA gene. A total of 51 partial clone sequences were phylogenetically evaluated. The predominating group was found in the high-(G+C) (mol%) gram-positive bacterial subphylum (31% of the sequenced clones), while the gamma proteobacteria only constituted 9.8% of the clones. Received: 12 June 1997 / Received revision: 26 September 1997 / Accepted: 28 September 1997  相似文献   

11.
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes.  相似文献   

12.
Sulfate-reducing bacteria with oval to rod-shaped cells (strains AcRS1, AcRS2) and vibrio-shaped cells (strains AcRM3, AcRM4, AcRM5) differing by size were isolated from anaerobic marine sediment with acetate as the only electron donor. A vibrio-shaped type (strain AcKo) was also isolated from freshwater sediment. Two strains (AcRS1, AcRM3) used ethanol and pyruvate in addition to acetate, and one strain (AcRS1) grew autotrophically with H2, sulfate and CO2. Higher fatty acids or lactate were never utilized. All isolates were able to grow in ammonia-free medium in the presence of N2. Nitrogenase activity under such conditions was demonstrated by the acetylene reduction test. The facultatively lithoautotrophic strain (AcRS1), a strain (AcRS2) with unusually large cells (2×5 m), and a vibrio-shaped strain (AcRM3) are described as new Desulfobacter species, D. hydrogenophilus, D. latus, and D. curvatus, respectively.  相似文献   

13.
An upflow anaerobic sludge blanket reactor was operated under thermophilic conditions (55° C) for 160 days by feeding a wastewater containing sucrose as the major carbon source. The reactor exhibited a satisfactory performance due to the formation of well-settling granulated sludge, achieving a total organic carbon (TOC) removal of above 80% at an organic loading rate of 30 kg total organic C m–3 day–1. Structural and microbial properties of the methanogenic granular sludge were examined using scanning electron microscope X-ray analyses and serum vial activity tests. All the thermophilic granules developed showed a double-layered structure, comprised of a black core portion and a yellowish exterior portion. The interior cope portion contained abundant crystalline precipitates of calcium carbonate. Calcium-bound phosphorus was also present more prominently in the core portion than in the exterior portion. Methanogenic activities of the thermophilic granules both from acetate and from H2 increased with increasing vial-test temperature in the range of 55–65° C [from 1.43 to 2.36 kg CH4 chemical oxygen demand (COD) kg volatile suspended solids (VSS)–1 day–1 for acetate and from 0.85 to 1.11 kg CH4 COD kg VSS–1 day–1 for H2]. On the other hand, propionate-utilizing methanogenic activity was independent of vial-test temperature, and was much lower (0.1–0.12 kg CH4 COD kg VSS–1 day–1) than that from either acetate or H2. Acetate consumption during vial tests was considerably inhibited by the presence of H2 in the headspace, indicating that a syntrophic association between acetate oxidizers and H2-utilizing methane-producing bacteria was responsible for some portion of the overall acetate elimination by the theromophilically grown sludge.  相似文献   

14.
The performance of native and heat-treated anaerobic granular sludge in removing of malachite green (MG) from aqueous solution was investigated with different conditions, such as pH, ionic strength, initial concentration and temperature. The maximum biosorption was both observed at pH 5.0 on the native and heat-treated anaerobic granular sludge. The ionic strength had negative effect on MG removal. Kinetic studies showed that the biosorption process followed pseudo-second-order and qe for native and heat-treated anaerobic granular sludge is 61.73 and 59.17 mg/g at initial concentration 150 mg/L, respectively. Intraparticle diffusion model could well illuminate adsorption process and faster adsorption rate of native anaerobic granular sludge than heat-treated anaerobic granular sludge. The equilibrium data were analyzed using Langmuir and Freundlich model, and well fitted Langmuir model. The negative values of ΔG° and ΔH° suggested that the interaction of MG adsorbed by native and heat-treated anaerobic granular sludge was spontaneous and exothermic. Desorption studies revealed that MG could be well removed from anaerobic granular sludge by 1% (v/v) of HCl–alcohol solution.  相似文献   

15.
The role of glycogen in the uptake of acetate in anaerobic-aerobic activated sludge without enhanced biological phosphorus removal were investigated. Although the polyphosphate content of the sludge was minimized by lowering the phosphorus feeding concentration, significant acetate uptake and accumulation of polyhydroxyalkanoates (PHAs) were observed in proportion to glycogen consumption under anaerobic conditions. The results of anaerobic inhibition studies, which showed suppressive effects on acetate uptake by a glycolysis inhibitor (iodoacetate) but not by a membrane ATPase inhibitor (N,N′-dicyclohexyl carbodiimide), supported an assumption that glycogen degradation through glycolysis supplies the required ATP and reducing power for PHA synthesis from acetate and consumed glycogen. Under subsequent aerobic conditions, the accumulated PHAs were depleted and the consumed glycogen recovered to the same level as that at the start of the anaerobic phase. Iodoacetate also inhibited the recovery of glycogen under aerobic conditions, suggesting that nearly 50% of the PHAs depleted was used for glycogen synthesis through reversed glycolysis.  相似文献   

16.
A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch experiments where anaerobic and aerobic conditions were integrated by exposing anaerobic granular sludge to oxygen. Under these conditions, the azo dyes were reduced, resulting in a temporal accumulation of aromatic amines. 4-Aminophenol (4-AP) and aniline were detected from the reduction of 4-PAP. 5-Aminosalicylic acid (5-ASA) and sulfanilic acid (SA) were detected from the reduction of MY10. Subsequently, aniline was degraded further in the presence of oxygen by the facultative aerobic bacteria present in the anaerobic granular sludge. 5-ASA and SA were also degraded, if inocula from aerobic enrichment cultures were added to the batch experiments. Due to rapid autoxidation of 4-AP, no enrichment culture could be established for this compound. The results of this study indicate that aerobic enrichment cultures developed on aromatic amines combined with oxygen-tolerant anaerobic granular sludge can potentially be used to completely biodegrade azo dyes under integrated anaerobic/aerobic conditions. Received: 16 September 1998 / Received revision: 14 December 1998 / Accepted: 21 December 1998  相似文献   

17.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

18.
The effect of temperature on granulation and microbial interaction of anaerobic sludges grown in thermophilic upflow anaerobic sludge bed (UASB) reactors was investigated at two different temperatures, 55°C (Run 1) and 65°C (Run 2). Each run consisted of two phases. Phase 1 was conducted by feeding acetate for a period of 200 days. In Phase 2, both reactors were fed a mixture of acetate and sucrose for a further 100 days. During Phase 1, no granulation occurred in the sludge of either run. Microscopic observation revealed that the predominant methanogen was Methanothrix in Run 1, whereas Methanobacterium-like bacteria existed to a significant extent in Run 2. The acetate-utilizing methanogenic activity of both sludges increased with increasing test temperature in the range 55–65°C. Since the acetate-grown sludges exhibited far higher H2-utilizing methanogenic activity than acetate-utilizing methanogenic activity, it is suggested that a syntrophic association of acetate-oxidizing bacteria with hydrogenotrophic methanogens was responsible for a considerable portion of the overall acetate elimination in thermophilic anaerobic sludge. During Phase 2, granules coated with either filamentous bacteria or cocci-type bacteria (both presumably acid-forming bacteria) were successfully established in Run 1 and Run 2, respectively. Since the acetate-utilizing methanogenic activities of the granular sludges were four to five times higher than those of the acetate-grown sludges (Phase 1), the co-existence of these coating bacteria appeared to contribute to the enclosing of acetate consumers inside granules. Correspondence to: S. Uemura  相似文献   

19.
The formation of granules grown on glucose in an upflow anaerobic sludge blanket (UASB) reactor was investigated. Total granular sludge concentration retained in the UASB reactor was 34.5 g MLSS/l (30.0 g MLVSS/l) during 240 d operation on glucose minimum medium with the supplementation of 1.07 g NaHCO3 per 1 g glucose. This realized a high-rate methanogenic fermentation of glucose of 17.6 g COD/l-reactor-d at 3.4 d−1 of space velocity. The granules formed were relatively small, ranging mainly from 0.4 to 0.5 mm, had a relatively low cell density of 0.0542–0.0560 g MLVSS/ml, and had low specific gravity (0.97–1.19) due to very low ash content (11–13%). Electron microscopic analysis showed that Methanothrix spp. appeared dominant over the granules. The specific metabolic activities of bacterial trophic groups were the highest for H2 followed by glucose, acetate, and propionate.  相似文献   

20.
A quinone-respiring, enrichment culture derived from methanogenic granular sludge was phylogenetically characterized by using a combined cloning-denaturing gradient gel electrophoresis (DGGE) method, which revealed that the consortium developed was dominated by a single microorganism: 97% related, in a sequence of 1520 base pairs, to Geobacter sulfurreducens. The enrichment culture could grow with acetate, formate or H2 when humic acids, the humic model compound, anthraquinone-2,6-disulfonate (AQDS), or chelated Fe(III) was provided as a terminal electron acceptor. The occurrence of a humic acid- or quinone-respiring microorganism in the microbial community of a wastewater treatment system suggests that this type of microorganisms may play a potential role in anaerobic bioreactors treating humus-containing wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号