首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mg-ATPase activity of skeletal muscle myosin subfragment 1 (S1) is reversibly eliminated when it is aggregated by the force of osmotic pressure dehydration using polyethylene glycol (PEG). Several experiments indicate nucleotides bind aggregated S1, but the effects of binding are attenuated. Compared with S1 in solution, epsilonADP binds aggregated S1 with reduced affinity, and the bound epsilonADP fluorescence intensity is more effectively quenched by acrylamide. When ATP binds aggregated S1, the tryptophan intensity increases to only 50% of the solution level. Chemical cross-linking of cys-707 to cys-697 by p-phenylenedimaleimide is less efficient for aggregated S1 x MgADP. The data are consistent with aggregated S1 being able to bind nucleotide but not being able to complete the usual conformation change(s) in response to binding. If S1 is kept from aggregating by increasing the ionic strength at the same osmotic pressure, its Mg-ATPase activity and ATP-induced tryptophan fluorescence intensity increase are normal. The combined data are consistent with an ATP hydrolysis mechanism in which S1 segmental motion is coupled to its enzymatic activity. In this model, segmental motion is mechanically constrained by aggregation; the constrained S1 can bind ATP, but it cannot complete the hydrolysis mechanism.  相似文献   

2.
The kinetics of the SMP-catalyzed Pi-ATP exchange and oxidative phosphorylation was studied at variable [MgATP] + + [MgADP] and [MgATP]/[MgADP]. The existence on F1 of a center with a low affinity was demonstrated (KM = 0.4-2.7 mM). Saturation of this center with the Mg2+-complex of one of the nucleotides is obligatory for H+-ATPase to exhibit its ATP synthetase activity. It was found that with a decrease of [MgATP]/[MgADP] the lag periods, tau, of the reactions and KM(Pi) also show a decrease. Besides, in the Pi-ATP exchange reactions delta microH+ (steady-state) diminishes and SMP coupling is enhanced (the Vhydr/Vsynth ratio is decreased). Preincubation of SMP with MgADP eliminates the lags but does not affect the course of the steady-state reaction. It is concluded that F1 when bound to MgATP or MgADP changes to a "more" or "less coupled" conformational state, thus determining the rate of conversion to the ATP-synthetase functional state (ko = tau-1), the threshold potential of this conversion and the kinetic behaviour of ATP-synthetase (KM for Pi).  相似文献   

3.
The rate-limiting step in the actomyosin adenosinetriphosphatase cycle   总被引:3,自引:0,他引:3  
We have previously shown that myosin does not have to detach from actin during each cycle of ATP hydrolysis. In the present study, using the A-1 isoenzyme of myosin subfragment 1, we have investigated the nature of the rate-limiting steps in the ATPase cycle. Our results show that, at 15 degrees C, at very low ionic strength, KATPase determined from the double-reciprocal plot of ATPase activity vs. actin concentration is more than 6-fold stronger than KBINDING determined by directly measuring the binding of A-1 myosin subfragment 1 to actin during steady-state ATP hydrolysis. Computer modeling shows that this large difference between KATPase and KBINDING is not compatible with Pi release being the rate-limiting step in the ATPase cycle. If Pi release is not rate limiting, it is possible that the ATP hydrolysis step, itself, is rate limiting. However, this predicts that, at high actin concentration, the value of the initial Pi burst should be close to zero. Therefore, we measured the magnitude of the initial Pi burst in the presence of actin, using both direct measurement and measurement of relative fluorescence magnitude. Our results suggest that the magnitude of the initial Pi burst in the presence of actin is considerably higher than would be expected if the ATP hydrolysis step were the rate-limiting step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In the rapid “quench” kientics of myosin, the “initial phosphate burst” is the excess inorganic phosphate that is produced during the early time-course of ATP hydrolysis by myosin subfragment-1 (S-1) or HMM. In general, the existence of a Pi burst implies a rapid (i.e., generally an order of magnitude faster than the steady-state hydrolysis rate) lysis of the phospho-anhydride bond within the ATP molecule, followed by one or more slower steps that are rate limiting for the process. Thus, the presence of a Pi burst can provide an important clue to the mechanism of the reaction. However, in the case of actomyosin, this clue as long been the subject of controversy and misunderstanding. To measure the (initial) Pi burst, myosin S-1 (or HMM) is rapidly mixed with ATP and then the mixture is acid quenched after a specific time period. The medium produced contains free Pi generated from hydrolysis of the ATP. The quantitative measure of the phosphate generated in this way has always been significantly greater than that expected by steady-state “release” of Pi alone, and it is that very difference between this measured Pi after the quench and that amount of Pi expected to be released by steady-state considerations in that same time period that has been referred to as the “initial Pi burst”. Recent investigations of the kinetics of Pi release have used an entirely new method that directly measures the release of Pi from the enzyme-product complex. These studies have made reference to the properties of the “initial Pi burst” in the presence of actin, as well as to a new kinetic entity: the “burst of Pi release”, and have been often vague concerning the true nature of the initial Pi burst, as well as the properties of Pi release as predicted by the current models of the actin activation of the myosin ATPase activity. The purpose of the current article is to correct this oversight, to discuss the “burst” in some detail, and to display the kinetics predicted by the current models for the actin activation of myosin. Furthermore, predictions for the kinetics of the new “burst of Pi release” are discussed in terms of its ability to discriminate between the two current competing models for actin activation of the myosin ATPase activity.  相似文献   

5.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
At an intermediate stage in the hydrolysis of magnesium adenosine 5'-phosphate (MgATP) by myosin or actomyosin, there is an exchange of oxygen between water and the P gamma group of enzyme-bound nucleotide. Starting with [P gamma-18O]ATP as substrate, the exchange is revealed in the [18O]Pi species that are ultimately released as product into the reaction medium. An analysis of the distribution of these labeled Pi species, which contain 3, 2, 1, or none of the 18O atoms originally on the P gamma of ATP, is used to probe intermediate stages of the hydrolytic mechanism. In recent years, studies of this kind by several groups have shown that more than one pathway of hydrolysis operates. The work reported here demonstrates that two of these pathways are spurious; one is a "nonexchanging MgATPase" that is present in fresh myosin preparations; the other is an induced slow exchange that develops in myosin during storage (-20 degrees C) and subsequent aging (4 degrees C). However, after correction for these artifacts, two normal pathways for actomyosin hydrolysis remain. These normal pathways differ in the mode of interaction between actin and myosin in the course of hydrolysis; one is the Lymn-Taylor pathway where oxygen exchange occurs at a stage when actin and myosin are dissociated; the other is a pathway in which actin and myosin are associated during oxygen exchange. Each of these two pathways contributes an equal amount of Pi to the product pool. Thus, on average, each myosin head uses each of these pathways half the time. The findings suggest, e.g., that during contraction, myosin can dissociate from the actin filament only during every other cycle of MgATP hydrolysis or that only half the heads, at any one time, can exchange oxygen while free of the actin filament.  相似文献   

7.
Polarized fluorimetry was used to study in ghost muscle fibers the influence of a 40-kDa protein from the thin filaments of the mussel Crenomytilus grayanus on conformational changes of F-actin modified by the fluorescent probes 1,5-IAEDANS and FITC-phalloidin during myosin subfragment (S1) binding in the absence of nucleotides and in the presence of MgADP or MgATP. The fluorescence probes were rigidly bound with actin, which made the absorption and emission dipoles of the probes sensitive to changes in the orientation and mobility of both actin monomer and its subdomain-1 in thin filaments of the muscle fiber. On modeling different intermediate states of actomyosin, the orientation and mobility of oscillators of the dyes were changed discretely, which suggests multistep changes in the actin conformation during the cycle of ATP hydrolysis. The 40-kDa protein influenced the orientation and mobility of the fluorescent probes markedly, suppressing changes in their orientation and mobility in the absence of nucleotides and in the presence of MgADP, but enhancing these changes in the presence of MgATP. The calponin-like 40-kDa protein is supposed to prevent formation of the strong binding state of actomyosin in the absence of nucleotides and in the presence of MgADP but to activate formation of this state in the presence of MgATP.  相似文献   

8.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

9.
The kinetics of oxidative phosphorylation catalyzed by bovine heart submitochondrial particles was studied in a range of MgATP and MgADP concentrations from 0.3 to 10 mM. It is shown that, at a low uncoupler concentration (0.9 microM of tetrachlorotrifluoromethylbenzimidazole, the lag period of the reaction increases from 12 s to 2-3 min, and KM for Pi increases severalfold; the value of Vmax remains practically unchanged. Increasing the [MgATP]/[MgADP] concentration ratio, with their total concentration being unchanged, leads to similar changes in the kinetics of oxidative phosphorylation. The value of delta pH generated on the membrane of AS particles at delta microH+ = 60 delta pH was measured using 9-aminoacridine. It was found that the electrochemical potential of H+ ions shows the same thermodynamic shift in the reaction of energy-dependent Pi -ATP exchange throughout the [MgATP]/[MgADP] concentration range studied, from 0.1 to 10: the synthesis on the ATP molecule is provided by the transmembrane transfer of two H+ ions. It was shown that the binding of ATP and/or ADP in the allosteric site, whose saturation is necessary for the functioning of ATP synthase, occurs with equal constants, 1-2 mM. It is concluded that the lag period in the synthesis of ATP indicates the monomolecular transition ATP hydrolase-->ATP sysnthase, which comes about by the action of transmembrane potential. The binding of MgADP or MgATP renders the enzyme structure "more coupled" or "less coupled", respectively. Structural distinctions manifest themselves in a kinetically different behavior of mitochondrial ATP synthase at [MgATP] > [MgADP] and [MgATP] < [MgADP] and do not suggest futile leakage of H+ through the membrane.  相似文献   

10.
Ligand-induced myosin subfragment 1 global conformational change   总被引:4,自引:0,他引:4  
S Highsmith  D Eden 《Biochemistry》1990,29(17):4087-4093
The effects of selected ligands on the structure of myosin subfragment 1 (S1) were compared by using transient electrical birefringence techniques. With pairs of dilute solutions of S1 at 3.5 degrees C in low ionic strength (mu = 0.020 M) buffers that had matched electrical impedances, S1 with Mg2+, MgADP, or MgADP.Vi bound was subjected to 6-7-microseconds external electrical fields in the Kerr law range. Specific Kerr constants and the rates of rotational Brownian motion after the electric field was removed were measured. Neither Mg2+ nor MgADP had a measurable effect on either observable, but when orthovanadate (Vi) bound S1.MgADP it decreased the rotational correlation coefficient from 267 +/- 6 to 244 +/- 10 ns. Parallel measurements of MgATPase activity indicated that S1.MgADP.Vi was greater than 95% inhibited. These results confirm the conclusion of Aguirre et al. [(1989) Biochemistry 28, 799] that Vi binding to S1.MgADP increases its rate of rotational Brownian motion and provide data that are more quantitatively correlated with S1 structure. The Vi-induced change in the rotational correlation coefficient is consistent with S1 becoming more flexible or more compact when Vi binds. Assuming that S1.MgADP.Vi is an analogue for S1.MgADP.Pi, the structural changes observed for S1-ligand complexes in solution are discussed in relation to possible structural changes of intermediates on the kinetic pathway of ATPase hydrolysis. A new model of force generation by S1 in muscle is hypothesized.  相似文献   

11.
Active site trapping of nucleotide by smooth and non-muscle myosins   总被引:5,自引:0,他引:5  
The folded 10 S monomer conformation of smooth muscle myosin traps the hydrolysis products ADP and Pi in its active sites. To test the significance of this, we have searched for equivalent trapping in other conformational and assembly states of avian gizzard and brush border myosins, using formycin triphosphate (FTP) as an ATP analogue. When myosin monomers were in the straight-tail 6 S conformation, the hydrolysis products were released at about 0.03 s-1. Adoption of the folded 10 S monomer conformation reduced this rate by more than 100-fold, effectively trapping the products FDP and Pi in the active sites. This profound inhibition of product release occurred only on formation of the looped tail monomer conformation. In vitro-assembled myosin filaments released products at a comparable rate to free straight-tail 6 S monomers, and smooth muscle heavy meromyosin, which lacks the C-terminal two-thirds of the myosin tail, also did not trap the products in this way. Phosphorylation of the myosin regulatory light chain had no effect on the rate of product release from straight-tail 6 S myosin monomers or from myosin filaments. Rather, it allowed actin to accelerate product release. Phosphorylation acted also to destabilize the folded monomer conformation, causing the recruitment of molecules from the pool of folded monomers into the myosin filaments. The two processes of contraction and filament assembly are thus both controlled in vitro by light-chain phosphorylation. A similar linked control in vivo would allow the organization of myosin in the cell to adapt itself continuously to the pattern of contractile activity.  相似文献   

12.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

13.
The separation between Cys 697 (SH1) and Cys 707 (SH2) of the heavy chain of myosin subfragment-1 was previously measured by fluorescence resonance energy transfer with a donor linked to SH1 and an acceptor to SH2. In the present study the distribution of the distances between the two thiols was recovered from frequency-domain fluorometry. In the native state and in the presence of ligands such as MgADP, pyrophosphate, orthovanadate (Vi) and actin, we found wide distributions of the separations between SH1 and SH2 (11-16 A) comparable to that found in the random-coil state (20 A). These results suggest that the SH1-SH2 segment has a high degree of conformational flexibility even in native S1. The flexibility is not much affected by the physiological state of S1. However, the ligands MgADP, Vi and MgADP + Vi decrease significantly the mean SH1-SH2 distance from 27 to 17 A with the effect of MgADP+ Vi being the most pronounced. The anisotropy decay of donor-labeled S1 is biphasic with two rotational correlation times. The long component is decreased by these ligands from 289 to 93 ns, suggesting a more compact symmetric structure of S1 in the presence of the ligands. The complex S1(MgADP)Vi has been shown to be a stable analogue of S1(MgADP)Pi, an unstable intermediate that is generated in the actomyosin ATPase cycle during muscle contraction. Since the power stroke of muscle is accompanied by release of Pi from S1(MgADP)Pi, the present results are consistent with a model in which force generation can be accompanied by transition of S1 from a highly symmetric or compact structure to a more extended structure.  相似文献   

14.
The actin-myosin lattice spacing of rabbit psoas fibers was osmotically compressed with a dextran T-500, and its effect on the elementary steps of the cross-bridge cycle was investigated. Experiments were performed at the saturating Ca (pCa 4.5-4.9), 200 mM ionic strength, pH 7.0, and at 20 degrees C, and the results were analyzed by the following cross-bridge scheme: [formula: see text] where A = actin, M = myosin head, S = MgATP, D = MgADP, and P = Pi = phosphate. From MgATP and MgADP studies on exponential process (C) and (D), the association constants of cross-bridges to MgADP (K0), MgATP (K1a), the rate constants of the isomerization of the AM S state (k1b and k-1b), and the rate constants of the cross-bridge detachment step (k2 and k-2) were deduced. From Pi study on process (B), the rate constants of the cross-bridge attachment (power stroke) step (k4- and k-4) and the association constant of Pi ions to cross-bridges (K5) were deduced. From ATP hydrolysis measurement, the rate constant of ADP-isomerization (rate-limiting) step (k6) was deduced. These kinetic constants were studied as functions of dextran concentrations. Our results show that nucleotide binding, the ATP-isomerization, and the cross-bridge detachment steps are minimally affected by the compression. The rate constant of the reverse power stroke step (k-4) decreases with mild compression (0-6.3% dextran), presumably because of the stabilization of the attached cross-bridges in the AM*DP state. The rate constant of the power stroke step (k4) does not change with mild compression, but it decreases with higher compression (> 6.3% dextran), presumably because of an increased difficulty in performing the power stroke. These results are consistent with the observation that isometric tension increases with a low level of compression and decreases with a high level of compression. Our results also show that the association constant K5 of Pi with cross-bridge state AM*D is not changed with compression. Our result further show that the ATP hydrolysis rate decreased with compression, and that the rate constants of the ADP-isomerization step (k6) becomes progressively less with compression. The effect of compression on the power stroke step and rate-limiting step implies that a large-scale molecular rearrangement in the myosin head takes place in these two slow reaction steps.  相似文献   

15.
Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which we previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, we determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306]. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. We found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.  相似文献   

17.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

18.
Lys-553 of skeletal muscle myosin subfragment 1 (S1) was specifically labeled with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) and fluorescence quenching experiments were carried out to determine the accessibility of this probe at Lys-553 in both the strongly and weakly actin-bound states of the MgATPase cycle. Solvent quenchers of varying charge [nitromethane, (2,2,6, 6-tetramethyl-1-piperinyloxy) (TEMPO), iodide (I(-)), and thallium (Tl(+))] were used to assess both the steric and electrostatic accessibilities of the FHS probe at Lys-553. In the strongly bound rigor (nucleotide-free) and MgADP states, actin offered no protection from solvent quenching of FHS by nitromethane, TEMPO, or thallium, but did decrease the Stern-Volmer constant by almost a factor of two when iodide was used as the quencher. The protection from iodide quenching was almost fully reversed with the addition of 150 mM KCl, suggesting this effect is ionic in nature rather than steric. Conversely, actin offered no protection from iodide quenching at low ionic strength during steady-state ATP hydrolysis, even with a significant fraction of the myosin heads bound to actin. Thus, the lower 50 kD subdomain of myosin containing Lys-553 appears to interact differently with actin in the weakly and strongly bound states.  相似文献   

19.
S Highsmith 《Biochemistry》1990,29(47):10690-10694
The ionic strength dependence of skeletal myosin subfragment 1 (S1) binding to unregulated F-actin was measured in solutions containing from 0 to 0.50 M added lithium acetate (LiOAc) in the absence and presence of MgADP. The data were analyzed by using a theory based on an ion interaction model that is rigorous for high ionic strength solutions [Pitzer, K. S. (1973) J. Phys. Chem. 77, 268-277] in order to obtain values for K, the equilibrium association constant when the ionic strength is zero, and for [zMzA[, the absolute value of the product of the net electric charges of the actin binding site on myosin (zM) and the myosin binding site on actin (zA). The presence of MgADP reduced K by a factor of 10, as expected, and reduced [zMzA[ by about 1 esu2. Because the presence of MgADP is not likely to change the net charge of the myosin binding site on actin, these data are consistent with a model in which MgADP binding to S1 reduces its affinity for actin by a mechanism that reduces the net electric charge of the acting binding site on S1. The value of [zMzA[ in the absence of ADP was 8.1 +/- 0.9 esu2, which, if one uses integer values, suggests that zM and zA are in the 8+ to 1+ esu and 1- to 8- esu ranges, respectively. ADP binding then reduces zM to the 7+ to 0.88+ esu range.  相似文献   

20.
The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5′-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase and in vitro sliding of actin over myosin. TNP-Lys84-S1's properties and interactions with actin were examined to determine how trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号