首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Familial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies. In this study, we report the generation and characterization of a mouse model carrying the complete human IKBKAP locus with the FD IVS20+6T-->C splice mutation. We show that the mutant IKBKAP transgene is misspliced in this model in a tissue-specific manner that replicates the pattern seen in FD patient tissues. Creation of this humanized mouse is the first step toward development of a complex phenotypic model of FD. These transgenic mice are an ideal model system for testing the effectiveness of therapeutic agents that target the missplicing defect. Last, these mice will permit direct studies of tissue-specific splicing and the identification of regulatory factors that play a role in complex gene expression.  相似文献   

4.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

5.
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.  相似文献   

6.
S-antigen (S-Ag) is an abundant protein of the retina and pineal gland that elicits experimental autoimmune uveitis and pinealocytis in several animal species. To study the elements regulating the expression of S-Ag, we generated transgenic mice expressing the chloramphenicol acetyl transferase (CAT) gene under the control of a 1.3-kilobase pair 5'-flanking segment of the mouse S-Ag gene. While all of the transgenic mice expressed CAT activity in the retina, in some animals CAT activity was also detected in the pineal gland, lens, and brain. Immunoblotting, polymerase chain reaction-mediated detection of RNA, and immunocyto-staining of transgenic tissues with antibodies to CAT and S-Ag established that the profile of expression of the transgene corresponded to that of S-Ag; both proteins were detectable in retinal photoreceptor cells, pinealocytes, lens fiber and epithelial cells, the cerebellum, and the cerebral cortex. These results indicate that S-Ag is expressed in a wider spectrum of the cell types than previously recognized and that a 1.3-kilobase pair S-Ag promoter segment contains sufficient information to direct appropriate tissue-specific gene expression in transgenic mice.  相似文献   

7.
8.
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5′ proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3′ hepatic control region, derived from a region ∼18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3′ splice acceptor sites causing deletion of cloned 5′ untranslated mRNA sequences and, in some cases, deletion of the 5′ end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3′ splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1–exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.  相似文献   

9.
10.
M Mehtali  M LeMeur  R Lathe 《Gene》1990,91(2):179-184
Transgenic mouse lines were established bearing tandem arrays of a fusion construct comprising the promoter region of a housekeeping gene, HMGCR, encoding 3-hydroxy 3-methylglutaryl CoA reductase, linked to a bacterial cat reporter gene encoding chloramphenicol acetyltransferase (CAT). CAT activity was observed in all transgenic mouse tissues examined. The methylation state of the fusion transgene was determined. In non-transgenic mice the endogenous HMGCR promoter is devoid of methylation while flanking regions are extensively modified. In HMGCR-cat transgenic mice the fusion gene promoter was found to be similarly hypomethylated. However, the extent of hypomethylation varied with copy number: methylation-free status was progressively lost with increasing transgene copy number. Further transgenic mouse lines were constructed carrying a truncated HMGCR regulatory region linked to cat. Transgene expression and hypomethylation were observed in testis but not in any other tissue, and testis-specific methylation-free status was also lost at high copy number. Loss of hypomethylation at high copy number may indicate that saturable DNA-binding factors normally protect the HMGCR promoter from methylation.  相似文献   

11.
12.
13.
14.
Transgenic mice carrying multiple copies of the human tyrosine hydroxylase (TH) gene have been produced. The transgenes were transcribed correctly and expressed specifically in brain and adrenal gland. The level of human TH mRNA in brain was about 50-fold higher than that of endogenous mouse TH mRNA. In situ hybridization demonstrated an enormous region-specific expression of the transgene in substantia nigra and ventral tegmental area. TH immunoreactivity in these regions, though not comparable to the increment of the mRNA, was definitely increased in transgenic mice. This observation was also supported by Western blot analysis and TH activity measurements. However, catecholamine levels in transgenics were not significantly different from those in nontransgenics. These results suggest unknown regulatory mechanisms for human TH gene expression and for the catecholamine levels in transgenic mice.  相似文献   

15.
Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.  相似文献   

16.
17.
We have developed six transgenic lines of mice with constructs containing presumptive 5' regulatory regions of carbonic anhydrase II (CA II). Four of the lines contained 1,100 bases of the 5' flanking region of the human CA II gene, and two transgenic lines resulted from a construct containing 500 bases of the 5' flanking region of the mouse CA II gene. Tissue-specific expression of the chloramphenicol acetyltransferase (CAT) gene was not obtained in any of the transgenic lines. One of the transgenic lines was found to have high levels of expression of CAT in cerebellum. This expression persisted through multiple generations and was independent of the parental origin of the transgene. On the assumption that the expression was due to the insertion of the transgene in or near a gene expressed normally in cerebellum, homozygous mice were bred for the transgenic insert to see if a mutation might have been induced. Homozygous mice were found and seemed to be normal in all aspects of their phenotype studied. Thus, in this case, neither the insertion of the gene nor the ectopic expression of CAT seemed to be harmful to the animals.  相似文献   

18.
19.
L G Guy  R Kothary    L Wall 《Nucleic acids research》1997,25(21):4400-4407
We studied transgenic mice carrying the lacZ reporter gene linked to the erythroid-specific beta-globin promoter and beta-globin locus control region (LCR). Previously, we had demonstrated that the total level of expression of beta-galactosidase enzyme, which is the product of the lacZ gene, varies widely between different transgenic mice due to position effects at the sites of transgene integration. Here, using the X-gal based in situ assay for beta-galactosidase activity, we found that the percent erythroid cells that expressed the transgene also varied widely between the mice. Moreover, a kinetic analysis showed that the average beta-galactosidase content per expressing cell varied both between samples of different transgenic descent and between erythroid cells within each sample, demonstrating that the variable expression of this lacZ transgene was being controlled in a graded manner. These results suggest that the beta-globin LCR enhancers function through a graded model, which is described, rather than the binary mechanism that has been proposed previously for other enhancers.  相似文献   

20.
Abstract: Previously we identified two alternative first exons (exon N1 and exon L1) coding for 5' untranslated regions of human aromatic l -amino acid decarboxylase (AADC) and found that their alternative usage produced two types of mRNAs in a tissue-specific manner. To determine the cis -acting element regulating the tissue-specific expression of human AADC, we produced three kinds of transgenic mice harboring 5' flanking regions of the human AADC gene fused to the bacterial chloramphenicol acetyltransferase (CAT) gene. The transgene termed ACA contained −7.0 kb to −30 bp in exon N1, including the entire exon L1; ACN contained −3.6 kb to −30 bp in exon N1; and ACL contained −2.8 kb to −42 bp in exon L1. The ACA transgenic mice expressed CAT at extremely high levels in peripheral nonneuronal tissues, such as pancreas, liver, kidney, small intestine, and colon, that contained endogenous high AADC activity, whereas CAT immunoreactivity was not detected in either catecholaminergic or serotonergic neurons in the CNS. Thus, it was suggested that the ACA transgene contained the major part of cis -regulatory elements for the expression of AADC in peripheral nonneuronal tissues. On the other hand, the ACN transgenic mice moderately expressed CAT in various tissues except for the lung and liver, and the ACL transgenic mice showed moderate CAT expression only in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号