首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A number of methods are described by the use of which observations were made on the standard coil in the interphase chromosomes of Prorocentrum micans. This is the first algal flagellate in which chromosome spirals have been investigated. The chromosomes were found to have predominantly right-handed helices with an average of just over seven gyres per chromosome after the standard treatment. On the basis of electron microscopical observations it is suggested that the purpose of the spiral is to hold together the many micro-fibrils which make up the chromonema. The spiral is not an artifact.  相似文献   

2.
The chromosome structure of human metaphases was observed in the scanning electron microscope (SEM) after exposure to G-banding techniques for light microscopy (LM). Individual chromosomes showed an inherent specificity of quaternary coiling. Circumferential grooves along the chromatids demarcated the individual gyres of the coils, which were shown to correspond to the LM G-banding pattern. An increased number of quaternary coils was observed in prometaphase chromosomes, which were shown to be correlated with the high resolution LM bands. We propose that the observation of G-bands relies on LM visualization of quaternary structure by accumulation of Giemsa stain between the coils.  相似文献   

3.
We have used light microscopy and serial thin-section electron microscopy to visualize intermediates of chromosome decondensation during G1 progression in synchronized CHO cells. In early G1, tightly coiled 100-130-nm "chromonema" fibers are visualized within partially decondensed chromatin masses. Progression from early to middle G1 is accompanied by a progressive uncoiling and straightening of these chromonema fibers. Further decondensation in later G1 and early S phase results in predominantly 60-80-nm chromonema fibers that can be traced up to 2-3 microns in length as discrete fibers. Abrupt transitions in diameter from 100-130 to 60-80 nm along individual fibers are suggestive of coiling of the 60-80-nm chromonema fibers to form the thicker 100-130-nm chromonema fiber. Local unfolding of these chromonema fibers, corresponding to DNA regions tens to hundreds of kilobases in length, reveal more loosely folded and extended 30-nm chromatin fibers. Kinks and supercoils appear as prominent features at all observed levels of folding. These results are inconsistent with prevailing models of chromosome structure and, instead, suggest a folded chromonema model of chromosome structure.  相似文献   

4.
Replicated sister chromatids are held together until mitosis by cohesin, a conserved multisubunit complex comprised of Smc1, Smc3, Scc1, and Scc3, which in vertebrate cells exists as two closely related homologues (SA1 and SA2). Here, we show that cohesinSA1 and cohesinSA2 are differentially required for telomere and centromere cohesion, respectively. Cells deficient in SA1 are unable to establish or maintain cohesion between sister telomeres after DNA replication in S phase. The same phenotype is observed upon depletion of the telomeric protein TIN2. In contrast, in SA2-depleted cells telomere cohesion is normal, but centromere cohesion is prematurely lost. We demonstrate that loss of telomere cohesion has dramatic consequences on chromosome morphology and function. In the absence of sister telomere cohesion, cells are unable to repair chromatid breaks and suffer sister telomere loss. Our studies elucidate the functional distinction between the Scc3 homologues in human cells and further reveal an essential role for sister telomere cohesion in genomic integrity.  相似文献   

5.
Using methods of in vivo observation and ultrathin sectioning, it is shown that chromosomes of metaphase PE cells, previously treated with diluted Henk's solutions (70, 30 and 15%), undergo some structural transitions resulting in the formation of micronuclei. At the early stages of hypotonic treatment chromosomes are seen considerably swollen and losing the higher levels of organization, including the chromonema and chromomeres. The chromosomal bodies are formed by DNP fibers 10-25 nm in diameter making loops radiating from the central part of the chromatids. Chromosomes are capable of recondensing from this state by consecutive reconstitution of G-bands, chromomeres and the chromonema. The subsequent secondary decondensation of chromosomes is analogous to telophase decondensation at the normal mitosis, but it results in the formation of a great number of small nuclei (micronuclei). The chromatin structure in micronuclei as well as their ability to synthesize RNA and to replicate DNA show these effects to be reversible. It has been suggested that the loop organization of DNP may be essential for sustaining the structural integrity of the mitotic chromosome.  相似文献   

6.
Human chromosome 11p15.3 is associated with chromosome aberrations in the Beckwith Wiedemann Syndrome and implicated in the pathogenesis of different tumor types including lung cancer and leukemias. To date, only single tumor-relevant genes with linkage to this region (e.g. LMO1) have been found suggesting that this region may harbor additional potential disease associated genes. Although this genomic area has been studied for years, the exact order of genes/chromosome markers between D11S572 and the WEE1 gene locus remained unclear. Using the FISH technique and PAC clones of the flanking markers we determined the order of the genomic markers. Based on these clones we established a PAC contig of the respective region. To analyse the chromosome area in detail the synteny of the orthologous region on distal mouse chromosome 7 was determined and a corresponding mouse clone contig established, proving the conserved order of the genes and markers in both species: "cen-WEE1-D11S2043-ZNF143-RANBP7-CEGF1- ST5-D11S932-LMO1-D11S572-TUB-tel", with inverted order of the murine genes with respect to the telomere/centromere orientation. The region covered by these contigs comprises roughly 1.6 MB in human as well as in mouse. The genomic sequence of the two subregions (around WEE1 and LMO1) in both species was determined using a shotgun sequencing strategy. Comparative sequence analysis techniques demonstrate that the content of repetitive elements seems to decline from centromere to telomere (52.6% to 34.5%) in human and in the corresponding murine region from telomere to centromere (41.87% to 27.82%). Genomic organisation of the regions around WEE1 and LMO1 was conserved, although the length of gene regions varied between the species in an unpredictable ratio. CpG islands were found conserved in putative promoter regions of the known genes but also in regions which so far have not been described as harboring expressed sequences.  相似文献   

7.
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions.  相似文献   

8.
YR—黏和染色体模型初探(下)   总被引:2,自引:0,他引:2  
季静  王罡 《遗传》2001,23(4):359-361
我们刨建了一个新的染色体模型LYR-黏和染色体模型,30nm螺线管通过JW-梯(或YU-梯)、染色线经螺旋化形成染色体。通过包装比、长度的推算、染色体结构的推算、以及碱基对的推算都与实验观测值吻合,确认了YR-黏和模型的可信度。YR-染色体模型能自然、合理地解释所有遗传现象,如交换、着丝粒、全身着丝粒或弥散型着丝粒染色体、同源染色体联会及联会复合体的中央区、多线染色体与膨突、灯刷染色体、染色体分带、姊妹染色体由前期到中期不分开、花粉管会导入外源遗传物质、高等生命是怎样从原始生物进化而来的等等。  相似文献   

9.
Qi He  Lei Chen  Yu Xu  Weichang Yu 《Proteomics》2013,13(5):826-832
Centromeres and telomeres are DNA/protein complexes and essential functional components of eukaryotic chromosomes. Previous studies have shown that rice centromeres and telomeres are occupied by CentO (rice centromere satellite DNA) satellite and G‐rich telomere repeats, respectively. However, the protein components are not fully understood. DNA‐binding proteins associated with centromeric or telomeric DNAs will most likely be important for the understanding of centromere and telomere structure and functions. To capture DNA‐specific binding proteins, affinity pull‐down technique was applied in this study to isolate rice centromeric and telomeric DNA‐binding proteins. Fifty‐five proteins were identified for their binding affinity to rice CentO repeat, and 80 proteins were identified for their binding to telomere repeat. One CentO‐binding protein, Os02g0288200, was demonstrated to bind to CentO specifically by in vitro assay. A conserved domain, DUF573 with unknown functions was identified in this protein, and proven to be responsible for the specific binding to CentO in vitro. Four proteins identified as telomere DNA‐binding proteins in this study were reported by different groups previously. These results demonstrate that DNA affinity pull‐down technique is effective in the isolation of sequence‐specific binding proteins and will be applicable in future studies of centromere and telomere proteins.  相似文献   

10.
The formation of a heteroduplex is probably the first step leading to chromosome exchanges. Heteroduplexes occur by complementary association of two single DNA strands from different chromosomes. Therefore, repetitive DNA is the most common region involved in heteroduplex formation. DNA repeats are defined as polarized when they run the same, and antipolarized when they run opposite from centromere to telomere in two different chromosomes or chromosome arms. Paracentric inversions may easily account for the origin of antipolarized repeats. Palindromes are a special type of reversed repeats which always run the same from centromere to telomere independently of the existence or not of chromosomal rearrangements. Heteroduplexes leading to symmetrical exchanges can only occur by association of DNA strands with polarized repeats. On the other hand, antipolarized repeats are essential for the occurrence of asymmetrical rearrangements. Accordingly, the frequency of induced symmetrical and asymmetrical exchanges in a cell population may partially depend on the frequency of polarized and antipolarized repeats in the genome.  相似文献   

11.
Prematurely condensed chromosomes (PCC) of HeLa cells synchronized in different phases of the cell cycle were analyzed by high-resolution scanning electron microscopy. The purpose of this study was to examine changes in the arrangement of the basic 30-nm chromatin fiber within interphase chromosomes associated with progression through the cell cycle. These studies revealed that highly condensed metaphase chromosomes and early G1-PCC consisted of tightly packed looping fibers. Early to mid G1-PCC were more extended and exhibited gyres suggestive of a despiralized chromonema. Further attenuation of PCC during progression through G1 was associated with a gradual transition from packed looping fibers to single extended longitudinal fibers. This process occurs prior to the initiation of DNA synthesis which appears to be localized within single longitudinal fibers. Following replication of a chromosome segment, extended longitudinal fibers were rapidly reorganized into packed looping fiber clusters concomitant with the formation of a multifibered chromosome axis. This results in the characteristic “pulverized” appearance of S-PCC when viewed by light microscopy. Subsequently, adjacent looping fiber domains coalesce, resulting in the uniformly packed, looping fiber arrangement observed in G2-PCC. Spiralization of the chromonema during the G2-mitotic transition results in the formation of highly compact metaphase chromosomes.  相似文献   

12.
The higher order structure of the centromere   总被引:2,自引:0,他引:2  
J B Rattner  C C Lin 《Génome》1987,29(4):588-593
The architecture of the centromere region of mouse chromosomes has been studied in cells grown in the presence of 5-azacytidine. This drug interferes with normal condensation producing elongated centromere regions. It has been found that this effect is reversible in the presence of the drug, allowing the observation of the repackaging of the extended centromere into a structure exhibiting native centromere morphology. Light microscopy as well as transmission and scanning electron microscopy of this condensation process suggests that the native centromere is formed by the helical folding of a subfiber with an approximate diameter of 100 nm. This fiber is in turn composed of loops of the 30-nm fiber class. The boundary between successive gyres of the subfiber are obscured at the completion of condensation resulting in the formation of a homogenous 250- to 300-nm fiber that is the native centromere. These observations provide evidence for an additional level of chromatin organization within the metaphase chromosome.  相似文献   

13.
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.  相似文献   

14.
15.
Several bacteriophage lambda clones containinginterstitialtelomererepeats (ITR) were isolated from a library of tomato genomic DNA by plaque hybridization with the clonedArabidopsis thaliana telomere repeat. Restriction fragments lacking highly repetitive DNA were identified and used as probes to map 14 of the 20 lambda clones. All of these markers mapped near the centromere on eight of the twelve tomato chromosomes. The exact centromere location of chromosomes 7 and 9 has recently been determined, and all ITR clones that localize to these two chromosomes map to the marker clusters known to contain the centromere. High-resolution mapping of one of these markers showed cosegregation of the telomere repeat with the marker cluster closest to the centromere in over 9000 meiotic products. We propose that the map location of interstitial telomere clones may reflect specific sequence interchanges between telomeric and centromeric regions and may provide an expedient means of localizing centromere positions.  相似文献   

16.
17.
18.
In southern Africa, brown oculocutaneous albinism (BOCA) is a distinct pigmentation phenotype. In at least two cases, it has occurred in the same families as tyrosinase-positive oculocutaneous albinism (OCA2), suggesting that it may be allelic, despite the fact that this phenotype was attributed to mutations in the TYRP1 gene in an American individual of mixed ancestry. Linkage analysis in five families mapped the BOCA locus to the same region as the OCA2 locus (maximum LOD 3.07; theta=0 using a six-marker haplotype). Mutation analysis of the human homologue of the mouse pink-eyed dilution gene (P), in 10 unrelated individuals with BOCA revealed that 9 had one copy of the 2.7-kb deletion. No other mutations were identified. Additional haplotype studies, based on closely linked markers (telomere to centromere: D15S1048, D15S1019, D15S1533, P-gene 2.7-kb deletion, D15S219, and D15S156) revealed several BOCA-associated P haplotypes. These could be divided into two core haplotypes, suggesting that a limited number of P-gene mutations give rise to this phenotype.  相似文献   

19.
The chromosomal locations of the 18S + 28S and 5S ribosomal RNA genes have been analyzed by in situ hybridization in ten anuran species of different taxonomic positions. The chosen species belong to both primitive and evolved families of the present day Anura. Each examined species has 18S + 28S rRNA genes clustered in one locus per haploid chromosome set: this locus is placed either in an intercalary position or proximal to the centromere, or close to the telomere. The 5S rRNA genes are arranged in clusters which vary in number from one to six per haploid set. The 5S rDNA sites are found in intercalary positions, at the telomeres, and at, or close to, the centromeres. Microchromosomes and small chromosomes in primitive karyotypes have been found to carry 5S rDNA sequences. The results are discussed in relation to ideas on the karyological evolution of Amphibia.  相似文献   

20.
Abstract Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Δ mlp2 Δ double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture ( Laroche et al., 1998 ) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号