首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the distribution of anoxygenic phototrophs in 23 steppe lakes in the Transbaikal region (Russia), in Uzbekistan (Central Asia) and in the Crimean peninsula (Ukraine). The lakes varied in their mineral content and composition (salinities from 0.2 to 300 g L(-1) ). The Transbaikal lakes were alkaline (pH>9), with high amounts of soda. The Uzbek and Crimean lakes were more pH neutral, frequently with high amounts of sulfates. The presence of anoxygenic phototrophs was registered by infrared epifluorescence microscopy, infrared fluorometry and pigment analyses. In mostly shallow, fully oxic lakes, the anoxygenic phototrophs represented 7-65% of the total prokaryotes, with the maxima observed in Transbaikal soda lakes Gorbunka (32%), Khilganta (65%), Zanday (58%) and Zun-Kholvo (46%). Some of the lakes contained over 1 μg bacteriochlorophyll L(-1) . In contrast, only small amounts of anoxygenic phototrophs were present in highly mineralized lakes (>100 g total salts L(-1) ); Borzinskoe, Tsagan-Nur (Transbaikal), Staroe (Crimea) and in the residual part of the south-west Aral Sea (Uzbekistan). The oxic environment and the specific diurnal changes of bacteriochlorophyll concentration observed suggest that the phototrophic community was mostly composed of aerobic anoxygenic phototrophs. The high abundances and bacteriochlorophyll concentrations point to an important role of aerobic anoxygenic phototrophs in the habitats studied.  相似文献   

2.
Simultaneous measurements of photosynthesis (both oxygenic and anoxygenic) and N(inf2) fixation were conducted to discern the relationships between photosynthesis, N(inf2) fixation, and environmental factors potentially regulating these processes in microbial mats in a tropical hypersaline lagoon (Salt Pond, San Salvador Island, Bahamas). Major photoautotrophs included cyanobacteria, purple phototrophic bacteria, and diatoms. Chemosystematic photopigments were used as indicators of the relative abundance of mat phototrophs. Experimental manipulations consisted of light and dark incubations of intact mat samples exposed to the photosystem II inhibitor DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea], a dissolved organic carbon source (D-glucose), and normal seawater (37(permil)). Photosynthetic rates were measured by both O(inf2) and (sup14)C methods, and nitrogenase activity (NA) was estimated by the acetylene reduction assay. Moderate reductions in salinity (from 74 to 37(permil)) had no measurable effect on photosynthesis, O(inf2) consumption, or NA. CO(inf2) fixation in DCMU-amended samples was (symbl)25% of that in the control (nonamended) samples and demonstrated photosynthetic activity by anoxygenic phototrophs. NA in DCMU-amended samples, which was consistently higher (by a factor of 2 to 3) than the other (light and dark) treatments, was also attributed to purple phototrophic bacteria. The ecological implication is that N(inf2) fixation by anoxygenic phototrophs (purple phototrophic bacteria and possibly cyanobacteria) may be regulated by the activity of oxygenic phototrophs (cyanobacteria and diatoms). Consortial interactions that enhance the physiological plasticity of the mat community may be a key for optimizing production, N(inf2) fixation, and persistence in these extreme environments.  相似文献   

3.
In all photosynthetic organisms, chlorophylls function as light‐absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen‐sensitive dark‐operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen‐insensitive but light‐dependent PORs (LPORs). Based on this observation it was suggested that light‐dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic α‐proteobacterium Dinoroseobacter shibae DFL12T. In vitro and in vivo functional assays unequivocally prove light‐dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence‐based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light‐dependent enzyme of D. shibae DFL12T might have been obtained from cyanobacteria by horizontal gene transfer.  相似文献   

4.
Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.  相似文献   

5.
Hu Y  Du H  Jiao N  Zeng Y 《FEMS microbiology letters》2006,263(2):200-206
Known anoxygenic photosynthetic bacteria (APB) affiliated to Gammaproteobacteria usually use anaerobic metabolism and are restricted to oxygen-free habitats. Here, we report abundant (average of 34.5%) presence of diverse APB related to gamma-like Proteobacteria in oxic oceanic surface water as indicated by the pufM gene, that encodes the M subunit of the light reaction centre complex. Thus, our sequences were most likely derived from aerobic anoxygenic phototrophs (AAnP). Two genetically distinct genotypes were revealed: one was from the oligotrophic North Pacific Ocean Gyre and the other, was from the trophic East China Sea and Bering Sea. The discovery of abundant presence of novel gamma-like Proteobacterial pufM gene in the oxic seawater extends the functional ecotypes of AAnP.  相似文献   

6.
The aerobic phototrophic bacteria are a recently discovered group capable of producing a photosynthetic apparatus similar to that of purple phototrophic bacteria. However, this apparatus, in contrast to that of their anaerobic counterparts, is functional in terms of photoinduced electron transport only under aerobic conditions. Although these bacteria have been widely studied, little is yet known about their ecological importance, and why they differ from other anoxygenic phototrophs with respect to oxygen requirements. In recent years a large number of new genera and species have been described from a wide variety of habitats, and evidence has been presented to support their important ecological role. This minireview focuses on recent discoveries regarding taxonomy, ecology and physiology, as well as the latest advances in the understanding of their photosynthetic apparatus and its genetic regulation.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Rapid growth rates of aerobic anoxygenic phototrophs in the ocean   总被引:1,自引:0,他引:1  
We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.  相似文献   

8.
The phylogenetic heterogeneity of anoxygenic phototrophic bacteria has been revealed by 16S rRNA sequence analysis, the results of which have led to extensive taxonomic rearrangements within previously defined taxa of phototrophs and stimulated interest in this group of organisms. Anoxygenic photosynthetic bacteria can be found within 4 of the 12 phylogenetic lineages, and in some cases are highly related to non-photosynthetic members of these groups. The largest number of phototrophs are found in the class Proteobacteria. Comparative phylogenetic analysis using 23S rDNA sequences generally supports the topology obtained from 16S rDNA sequences. The photosynthetic reaction centers are conserved in all photosynthetic bacteria, and are of two types. One is shared by the Proteobacteria and Chloroflexus aurantiacus and is similar to Photosystem II of cyanobacteria, while heliobacteria and Chlorobium and relatives possess a reaction center similar to the cyanobacterial Photosystem I. These similarities are supported by sequence analysis of core reaction center peptides, but contradict phylogenies reconstructed from rRNA sequence analysis. Genome analysis by means of physical mapping has been performed for only three species of anoxygenic phototrophs. Some conservation of operon structure and gene sequence has been found within the Proteobacteria, but does not extend to other phototrophs. Received: 29 December 1995 / Accepted: 19 July 1996  相似文献   

9.
Aerobic anoxygenic phototrophs were recently found to constitute a significant portion of the marine microbial community. These bacteria use bacteriochlorophyll-containing reaction centers to perform photoheterotrophic metabolism. A new instrument for routine measurements of both chlorophyll a and bacteriochlorophyll a was used for monitoring anoxygenic phototrophs in the Baltic Sea in late summer 2003. Bacteriochlorophyll a concentration ranged from 8 to 50 ngl(-1), with an average bacteriochlorophyll/chlorophyll ratio of 4.2 x 10(-3). Moreover, diel trends in bacteriochlorophyll a signals were observed, with a distinct decline occurring during daylight hours. Based on laboratory measurements this phenomenon was ascribed to the complete inhibition of bacteriochlorophyll synthesis by light, which, in combination with a concurrent turnover of the cells, resulted in a pigment decline. Following this explanation, we postulate that bacteriochlorophyll a can serve as a natural 'pulse-and-chase' marker, allowing estimation of the mortality rates of anoxygenic phototrophs from the rates of pigment decline. Based on this assumption, we suggest that the Baltic photoheterotrophic community was characterized by high turnover rates, in a range of 0.7-2 d(-1).  相似文献   

10.
Genome organization, plasmid content and localization of the pufLM genes of the photosynthesis reaction center were studied by pulsed-field gel electrophoresis (PFGE) in marine phototrophic Alphaproteobacteria. Both anaerobic phototrophs (Rhodobacter veldkampii and Rhodobacter sphaeroides) and strictly aerobic anoxygenic phototrophs from the Roseobacter-Sulfitobacter-Silicibacter clade (Roseivivax halodurans, Roseobacter litoralis, Staleya guttiformis, Roseovarius tolerans, and five new strains isolated from dinoflagellate cultures) were investigated. The complete genome size was estimated for R. litoralis DSM6996(T) to be 4,704 kb, including three linear plasmids. All strains contained extrachromosomal elements of various conformations (linear or circular) and lengths (between 4.35 and 368 kb). In strain DFL-12, a member of a putative new genus isolated from a culture of the toxic dinoflagellate Prorocentrum lima, seven linear plasmids were found, together comprising 860 kb of genetic information. Hybridization with probes against the pufLM genes of the photosynthesis gene cluster after Southern transfer of the genomic DNAs showed these genes to be located on a linear plasmid of 91 kb in R. litoralis and on a linear plasmid of 120 kb in S. guttiformis, theoretically allowing their horizontal transfer. In all other strains, the pufLM genes were detected on the bacterial chromosome. The large number and significant size of the linear plasmids found especially in isolates from dinoflagellates might account for the metabolic versatility and presumed symbiotic association with eukaryotic hosts in these bacteria.  相似文献   

11.
Dogmas are unscientific. What is perhaps the greatest biological dogma of all time, the `unity of biochemistry' is, in the main, still having its day. According to present knowledge, the exceptions to this dogma are mere details when seen in relation to the biosystem as a whole. Nevertheless the exceptions are scientifically interesting and the understanding of them has led to a better comprehension of photosynthesis and ecology. Until the discovery of 14C, photosynthetic CO2 fixation was like a slightly opened black box. With 14C in hand scientists mapped out the path of carbon in green plant photosynthesis in the course of a few years. The impressive reductive pentose phosphate cycle was almost immediately assumed to be universal in autotrophs, including anoxygenic phototrophs, in spite of the odd observation to the contrary. A new dogma was born and held the field for about two decades. Events began to turn when green sulfur bacteria were found to contain ferredoxin-coupled ketoacid-oxidoreductases. This led to the formulation of a novel CO2-fixing pathway, the reductive citric acid cycle, but its general acceptance required much work by many investigators. However, the ice had now been broken and after some years a third mechanism of CO2 fixation was discovered, this time in Chloroflexus, and then a fourth in the same genus. One consequence of these discoveries is that it has become apparent that oxygen is an important factor that determines the kind of CO2-fixing mechanism an organism uses. With the prospect of the characterization of hordes of novel bacteria forecast by molecular ecologists we can expect further distinctive CO2 fixation mechanisms to turn up. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
《BBA》2023,1864(2):148946
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αβ-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.  相似文献   

13.
A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue, France) having water salinity from 70 per thousand to 150 per thousand (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids, hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reducing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant (73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microcoleus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium, Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, purple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of oxygen and light inside the microbial mat.  相似文献   

14.

Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.

  相似文献   

15.
Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle.  相似文献   

16.
During summer thermal stratification, a broad transition zone with hypoxic conditions is formed in meromictic ferruginous Lake Kuznechikha between the thermocline and the main gradient of water mineralization. In this zone, the chemical composition of water undergoes an ecologically significant transformation due to overlapping gradients of nutrient concentrations and redox conditions. We present an analysis of a strongly vertically structured community of prokaryotic and eukaryotic phototrophs developing in the lake as a whole and especially in the transition zone. In early summer 2009, a sequence of phototrophic organisms with depth in order Chlorophyceae → Chromatiales → Chloroflexales → Euglenales → Chlorobiales was observed in the transition zone, while cyanobacteria were almost completely absent. Biomass maximum of anoxygenic phototrophic bacteria was located between the peaks of phototrophic picoplankton and euglenoids. Such a coexistence of oxygenic and anoxygenic phototrophs in a wide range of depths is highly unusual and sharply distinguishes Lake Kuznechikha from waterbodies with sulphide-containing monimolimnion.  相似文献   

17.
Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO2 photoassimilation. Resistance of photosystem II to sulfide toxicity, allowing for oxygenic photosynthesis under sulfide, is found in cyanobacteria exposed to low H2S concentrations in various hot springs. When H2S levels exceed 200 μM another type of adaptation involving partial induction of anoxygenic photosynthesis, operating in concert with partially inhibited oxygenic photosynthesis, is found in cyanobacterial strains isolated from both hot springs and hypersaline cyanobacterial mats. The fourth type of adaptation to sulfide is found at H2S concentrations higher than 1 mM and involves a complete replacement of oxygenic photosynthesis by an effective sulfide-dependent, photosystem II-independent anoxygenic photosynthesis. The ecophysiology of the various sulfide-adapted cyanobacteria may point to their uniqueness within the division of cyanobacteria.  相似文献   

18.
The distribution of aerobic anoxygenic phototrophs (AAPs) was surveyed in various regions of the Mediterranean Sea in spring and summer. These phototrophic bacteria were present within the euphotic layer at all sampled stations. The AAP abundances increased with increasing trophic status ranging from 2.5 × 10(3) cells per ml in oligotrophic Eastern Mediterranean up to 90 × 10(3) cells per ml in the Bay of Villefranche. Aerobic anoxygenic phototrophs made up on average 1-4% of total prokaryotes in low nutrient areas, whereas in coastal and more productive stations these organisms represented 3-11% of total prokaryotes. Diel bacteriochlorophyll a decay measurements showed that AAP community in the Western Mediterranean grew rapidly, at rates from 1.13 to 1.42 day(-1). The lower AAP abundances registered in the most oligotrophic waters suggest that they are relatively poor competitors under nutrient limiting conditions. Instead, AAPs appear to be metabolically active organisms, which thrive better in more eutrophic environments providing the necessary substrates to maintain high growth rates.  相似文献   

19.
Despite the fact that heliobacteria are the only phototrophic representatives of the bacterial phylum Firmicutes, genomic analyses of these organisms have yet to be reported. Here we describe the complete sequence and analysis of the genome of Heliobacterium modesticaldum, a thermophilic species belonging to this unique group of phototrophs. The genome is a single 3.1-Mb circular chromosome containing 3,138 open reading frames. As suspected from physiological studies of heliobacteria that have failed to show photoautotrophic growth, genes encoding enzymes for known autotrophic pathways in other phototrophic organisms, including ribulose bisphosphate carboxylase (Calvin cycle), citrate lyase (reverse citric acid cycle), and malyl coenzyme A lyase (3-hydroxypropionate pathway), are not present in the H. modesticaldum genome. Thus, heliobacteria appear to be the only known anaerobic anoxygenic phototrophs that are not capable of autotrophy. Although for some cellular activities, such as nitrogen fixation, there is a full complement of genes in H. modesticaldum, other processes, including carbon metabolism and endosporulation, are more genetically streamlined than they are in most other low-G+C gram-positive bacteria. Moreover, several genes encoding photosynthetic functions in phototrophic purple bacteria are not present in the heliobacteria. In contrast to the nutritional flexibility of many anoxygenic phototrophs, the complete genome sequence of H. modesticaldum reveals an organism with a notable degree of metabolic specialization and genomic reduction.  相似文献   

20.
Bacteriochlorophyll a-containing aerobic anoxygenic phototrophs (AAnP) have been proposed to account for up to 11% of the total surface water microbial community and to potentially have great ecological importance in the world's oceans. Recently, environmental and genomic data based on analysis of the pufM gene identified the existence of alpha-proteobacteria as well as possible gamma-like proteobacteria among AAnP in the Pacific Ocean. Here we report on analyses of environmental samples from the Red and Mediterranean Seas by using pufM as well as the bchX and bchL genes as molecular markers. The majority of photosynthesis genes retrieved from these seas were related to Roseobacter-like AAnP sequences. Furthermore, the sequence of a novel photosynthetic operon organization from an uncultured Roseobacter-like bacterial artificial chromosome retrieved from the Red Sea is described. The data show the presence of Roseobacter-like bacteria in Red and Mediterranean Sea AAnP populations in the seasons analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号