首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of alkalosis on muscle ions at rest and with intense exercise   总被引:3,自引:0,他引:3  
The effects of metabolic and respiratory alkalosis (MALK and RALK) on intracellular strong ion concentrations ([ion]i) and muscle to blood ion fluxes were examined at rest and during 5 min of intense, intermittent tetanic stimulation in the isolated, perfused rat hindlimb. Compared with the control (C), perfusion of resting skeletal muscle during MALK and RALK significantly increased [Cl-]i and [Na+]i, and RALK significantly lowered [K+]i; these changes, however, did not affect initial hindlimb force production. In both resting and stimulated muscle, the intracellular ion changes corresponded to appropriate perfusate to muscle ion fluxes. At rest, changes in slow-twitch soleus were greater than in fast-twitch white gastrocnemius (WG), but stimulation-induced changes in [Lac]i and [K+]i were greater in WG. At the end of stimulation [K+]i and [Mg2+]i had decreased less in MALK than in C and RALK, particularly in plantaris and WG muscles. Compared with C, the muscle to perfusate flux of Lac- increased by 37% in MALK and 27% in RALK. This was associated with significantly less Lac- accumulation in all muscles in MALK than in RALK, which, in turn, had significantly less lactate than C. Lactate efflux from contracting skeletal muscle was significantly correlated with an uptake of Cl- by muscle. It is concluded that extracellular alkalosis alters skeletal muscle intracellular ionic composition and increases Lac- efflux from skeletal muscle. In agreement with other studies, lactate release appears to occur by both ionic and molecular transport processes. Alkalosis had no apparent effect on muscle performance with this preparation.  相似文献   

2.
To assess the importance of factors influencing the resolution of exercise-associated acidosis, measurements of acid-base variables were made in nine healthy subjects after 30 s of maximal exercise on an isokinetic cycle ergometer. Quadriceps muscle biopsies (n = 6) were taken at rest, immediately after exercise, and at 3.5 and 9.5 min of recovery; arterial and femoral venous blood were sampled (n = 3) over the same time. Intracellular and plasma inorganic strong ions were measured by neutron activation and ion-selective electrodes, respectively; lactate concentration ([La-]) was measured enzymatically, and plasma PCO2 and pH were measured by electrodes. Immediately after exercise, intracellular [La-] increased to 47 meq/l, almost fully accounting for a reduction in intracellular strong ion difference ([SID]) from 154 to 106 meq/l. At the same time, femoral venous PCO2 increased to 100 Torr and plasma [La-] to 9.7 meq/l; however, plasma [SID] did not change because of a concomitant increase in inorganic [SID] secondary to increases in [K+], [Na+], and [Ca2+]. During recovery, muscle [La-] fell to 26 meq/l by 9.5 min; [SID] remained low (101 and 114 meq/l at 3.5 and 9.5 min, respectively) due almost equally to the elevated [La-] (30 and 26 meq/l) and reductions in [K+] (from 142 meq/l at rest to 123 and 128 meq/l). Femoral venous PCO2 rose to 106 Torr at 0.5 min postexercise and fell to resting values at 9.5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We hypothesized that glycogenesis increases in muscle during exercise before significant glycogen depletion occurs. Therefore, rats ran for 15 or 90 min at speeds of 8-22 m/min. D-[5-3H]glucose (10 microCi/100 g body wt) was administered 10 min before the end of exercise. Hindlimb muscles [soleus (SOL), plantaris (PL), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] and a portion of liver were analyzed for glycogen concentrations and rates of glycogen synthesis (i.e., D-[3H]glucose incorporated into glycogen). At rest, marked differences were observed among muscles in their rates of glucose incorporation into glycogen: i.e., SOL = 24.3 +/- 3.1, RG = 5.4 +/- 1.9, PL = 2.8 +/- 1.1, EDL = 0.54 +/- 0.10, WG = 0.12 +/- 0.02 (SE) dpm.micrograms glycogen-1.10 min-1 (P less than 0.05 between respective muscles). Compared with the glucose incorporation into glycogen at rest, increments in the PL (272%), RG (189%), WG (400%), EDL (274%), and liver (175%) were observed after 90 min of exercise (P less than 0.05, all data). In contrast, a decrease in glucose incorporation into glycogen (-62%) occurred in the SOL at min 15 (P less than 0.05), but this returned to the rates observed at rest after 90 min of exercise. This measure for rates of net glycogen synthesis (dpm.microgram glycogen-1.10 min-1) was weakly related to the ambient glycogen levels in most muscles; the exception was the SOL (r = -0.79; P less than 0.05). There was up to a 50-fold difference in glycogen synthesis among muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.  相似文献   

5.
To determine the origins of the arteriovenous [H+] difference of muscle during contractions, arterial and muscle venous blood sample pairs were taken before and after 0.5, 5.0, and 30.0 min of 4/s isometric twitches of the gastrocnemius-plantaris muscle group of anesthetized dogs. These samples were analyzed for PO2, PCO2, and pH, the concentrations of O2, CO2, K+, Na+, La-, and Cl- in whole blood, and La-, K+, Na+, and Cl- in plasma. Whole blood was hemolyzed and analyzed for PO2, PCO2, and pH. Net O2 uptake, CO2 output, L, K+, Na+, and Cl- were calculated in addition to net output of non-CO2 acid (HA) and strong ion difference ([SID]) and common ion [SID] ([K+] + [Na+] - [Cl-] - [La-]). From these data we partitioned the origins of the arteriovenous [H+] difference via the common PCO2-pH diagram and via a [H+]-PCO2 diagram and determined whether true plasma arteriovenous [H+] differences reflect plasma and cell arteriovenous [H+] differences. The arteriovenous [H+] differences of plasma and hemolyzed blood were the same, showing that true plasma does reflect plasma and cells. K+ showed a small significant but transient output. Na+ was not significant, whereas Cl- showed a significant transient uptake. Lactate output and HA, calculated for dog blood acid-base, showed transient outputs and were the same. At 5.0 min when the arteriovenous difference was largest, CO2 alone would have increased [H+] 15.9 nmol/l whereas desaturation of Hb would have decreased [H+] 4.2 nmol/l and lactate could have raised [H+] 1.0 nmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The roles of ion fluxes in skeletal muscle fatigue   总被引:3,自引:0,他引:3  
Intense muscle contractions result in large changes in the intracellular concentrations of electrolytes. The purpose of this study was to examine the contributions of changes in intracellular strong ions to calculated changes in steady-state membrane potential (Em) and muscle intracellular H+ concentration ([H+]i). A physicochemical model is used to examine the origin of the changes in [H+]i during intense muscle contraction. The study used the isolated perfused rat hindlimb intermittently stimulated to contract at high intensity for 5 min. This resulted in significant K+ depletion of both slow (soleus) and fast (white gastrocnemius, WG) muscle fibers and a release of K+ and lactate (Lac-) into venous perfusate. The major contributor to a 12- to 14-mV depolarization of Em in soleus and WG was the decrease in intracellular K+ concentration ([K+]i). The major independent contributors to [H+]i are changes in the concentrations of strong and weak ions and in CO2. Significant decreases in the strong ion difference [( SID]i) in both soleus and WG contributed substantially to the increase in [H+]i during stimulation. In WG the model showed that the decrease in [SID]i accounted for 35% of the increase in [H+]i (133-312 nequiv/L; pHi = 6.88-6.51) at the end of stimulation. Of the main contributors to decreased [SID]i, increased [Lac-]i and decreased [K+]i contributed 40 and 60%, respectively, to increased [H+]i, whereas a decrease in [PCr2-]i contributed to reduced [H+]i. It is concluded that decreased muscle [K+]i during intense contractions is the single most important contributor to reduced Em and increased [H+]i. Depletion of PCr2- simultaneous to the changes in [Lac-]i and [K+]i prevents larger increases in [H+]i and helps maintain the intracellular acid-base state.  相似文献   

7.
Red cell concentrations of hemoglobin (MCHC), H+, Na+, K+, Mg++, cl- were measured in femoral venous blood of six untrained (UT), six endurance trained (TR) and three semitrained (ST) subjects during graded increasing work (4, 8, 12, 18 and 24 mkp/s, 10-15 min on each step) on a bicycle ergometer. Before exercise no significant differences were detected for the measured variables when comparing UT and TR. During exercise MCHC, [Na+], [K+] and [Mg++] remained constant indicating lack of water shift into the erythrocytes in spite of a marked acidosis (lowest pH Blood value 7.225). This lack resulted from an elevated extracellular osmolality. [H+]Ery and [Cl-]Ery maximally increased by 2.0 X 10(-8) eq/kg H2O and 10 meq/l, respectively. The change was markedly greater in UT than in TR at equal load. However, if [H+] Ery and [Cl-] Ery were related to pH of whole blood, differences between groups, almost disappeared and the ions were distributed as predictable from in vitro experiments (Fitzsimmons and Sendroy, 1961). Behaviour of H+ and Cl- may be of importance for oxygen dissociation under in vivo conditions.  相似文献   

8.
Mild physical activity performed immediately after a bout of intense exercise in fasting humans results in net glycogen breakdown in their slow oxidative (SO) muscle fibers and glycogen repletion in their fast twitch (FT) fibers. Because several animal species carry a low proportion of SO fibers, it is unclear whether they can also replenish glycogen in their FT fibers under these conditions. Given that most skeletal muscles in rats are poor in SO fibers (<5%), this issue was examined using groups of 24-h fasted Wistar rats (n=10) that swam for 3 min at high intensity with a 10% weight followed by either a 60-min rest (passive recovery, PR) or a 30-min swim with a 0.5% weight (active recovery, AR) preceding a 30-min rest. The 3-min sprint caused 61-79% glycogen fall across the muscles examined, but not in the soleus (SOL). Glycogen repletion during AR without food was similar to PR in the white gastrocnemius (WG), where glycogen increased by 71%, and less than PR in both the red and mixed gastrocnemius (RG, MG). Glycogen fell by 26% during AR in the SOL. Following AR, glycogen increased by 36%, 87%, and 37% in the SOL, RG, and MG, respectively, and this was accompanied by the sustained activation of glycogen synthase and inhibition of glycogen phosphorylase in the RG and MG. These results suggest that mammals with a low proportion of SO fibers can also replenish the glycogen stores of their FT fibers under extreme conditions combining physical activity and fasting.  相似文献   

9.
The effect of skeletal muscle glycogen content on in situ glycogenolysis during short-term tetanic electrical stimulation was examined. Rats were randomly assigned to one of three conditions: normal (N, stimulated only), supercompensated (S, stimulated 21 h after a 3-h swim), and fasted (F, stimulated after a 20-h fast). Before stimulation, glycogen contents in the white (WG) and red gastrocnemius (RG) and soleus (SOL) muscles were increased by 13-25% in S and decreased by 15-27% in F compared with N. Hindlimb blood flow was occluded 60 s before stimulation to produce a predominantly anaerobic environment. Muscles were stimulated with trains of supramaximal impulses (100 ms at 80 Hz) at a rate of 1 Hz for 60 s. Muscle glycogenolysis was measured from the decrease in glycogen content and estimated from the accumulation of glycolytic intermediates in the closed system. The resting glycogen content had no effect on measured or estimated glycogenolysis in all muscles studied. Average glycogenolysis in the WG, RG, and SOL muscles was 98.4 +/- 4.3, 60.9 +/- 4.0, and 11.2 +/- 3.6 mumol glucosyl U/g dry muscle, respectively. Hindlimb tension production was similar across conditions. The results suggest that in vivo glycogen phosphorylase activity in skeletal muscle is not regulated by the content of its substrate glycogen (range 80-165 mumol/g) during short-term tetanic stimulation in an anaerobic environment.  相似文献   

10.
We hypothesized that, during isosmotic isonatremic HCl acidosis with maintained isocapnia in cisternal cerebrospinal fluid (CSF), acetazolamide, by inhibiting carbonic anhydrase (CA) in the central nervous system (CNS), should produce an isonatric hyperchloric metabolic acidosis in CSF. Blood and CSF ions and acid-base variables were measured in two groups of anesthetized and paralyzed dogs with bilateral ligation of renal pedicles during 5 h of HCl acidosis (plasma [HCO3-] = 11 meq/l). Mechanical ventilation was regulated such that arterial PCO2 dropped and CSF Pco2 remained relatively constant. In group I (control group, n = 6), CSF [Na+] remained unchanged, [HCO3-] and strong ions difference (SID) fell, respectively, 6.1 and 5 meq/l, and [Cl-] rose 3.5 meq/l after 5 h of acidosis. In acetazolamide-treated animals, (group II, n = 7), CSF [Na+] remained unchanged, [HCO3-], and SID fell 11 and 7.1 meq/l, respectively, and [Cl-] rose 7.1 meq/l. We conclude that during HCl acidosis inhibition of CNS CA by acetazolamide induces an isonatric hyperchloric metabolic acidosis in CSF, which is more severe than that observed in controls.  相似文献   

11.
The intracellular contents of sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and chloride (Cl-) in rat hindlimb muscles (soleus, plantaris, white and red gastrocnemii) were measured by instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). Muscle extracellular fluid volume (ECFV) was determined using [3H]mannitol, [14C]mannitol, [3H]polyethylene glycol (PEG, mol wt 900, PEG-900) or the chloride (Cl) method and intracellular fluid volume (ICFV) calculated. Rats were anesthetized with pentobarbital sodium. The muscles were biopsied, frozen in liquid nitrogen, freeze-dried, weighed, and transferred to vials for analysis. For a given muscle, ion contents measured by the two methods showed a consistent small difference which could not be explained. The PEG-900 space and the Cl method yielded a larger ECFV than did mannitol; it is concluded that PEG-900 and Cl overestimate ECFV. There were significant differences in total tissue water (TTW), ECFV, ICFV, and intracellular ion contents between the different muscle types. The fast glycolytic muscles (white gastrocnemius, plantaris) had lower TTW (758 ml/kg wet wt) and ECFV (6.5-8.5% TTW) but the highest ICFV; the soleus (slow oxidative fibers) had the highest TTW (766 ml/kg wet wt) and ECFV (10-15% TTW) but the lowest ICFV. The fast-twitch white gastrocnemius and plantaris muscles have a higher intracellular content of K+ and lower Na+ and Cl- than the slow-twitch soleus muscle. The technique of INAA provides a rapid and accurate means of determining intramuscular ion content in small samples of tissue.  相似文献   

12.
Female Sprague-Dawley rats (250 g) were hindlimb suspended for 14 days, and the effects of hindlimb unweighting (HU) on skeletal muscle anaerobic metabolism were investigated and compared with nonsuspended controls (C). Soleus (SOL), plantaris (PL), and red and white portions of the gastrocnemius (RG, WG) were sampled from resting and stimulated limbs. Muscle atrophy after HU was 46% in SOL, 22% in PL, and 24% in the gastrocnemius compared with nonsuspended C animals. The muscles innervated by the sciatic nerve were stimulated to contract with an occluded circulation for 60 s with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1.0 Hz. Peak tension development by the gastrocnemius-PL-SOL muscle group was similar in HU and C animals (13.0 +/- 1.2, 12.2 +/- 0.8 N/g wet muscle). Occlusion of the circulation before stimulation created a predominantly anaerobic environment, and in situ glycogenolysis and glycolysis were estimated from accumulations of glycolytic intermediates. Total glycogenolysis and glycolysis were higher in the RG muscle of HU animals (74.6 +/- 3.3, 58.1 +/- 1.1) relative to C (57.1 +/- 4.6, 46.1 +/- 2.9 mumol glucosyl units/g dry muscle). Consequently, total anaerobic ATP production was also increased (HU, 251.3 +/- 1.1; C, 204.6 +/- 8.9 mumol ATP/g dry muscle). Total ATP production, glycogenolysis, and glycolysis were unaffected by HU in SOL, PL, and WG muscles. The enhanced glycolytic activity in RG after HU may be attributed to a shift in the metabolic profile from oxidative to glycolytic in the fast oxidative-glycolytic fiber population.  相似文献   

13.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

14.
The purpose of this study was to elucidate the mechanisms underlying low-intensity exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression in rat skeletal muscles. Rats (5-6 wk old) swam without a load and ran on the treadmill at a speed of 13 m/min, respectively, in two 3-h sessions separated by 45 min of rest. PGC-1alpha content in epitrochlearis muscle (EPI) was increased by 75 and 95%, immediately and 6 h after swimming, respectively, with no increase in PGC-1alpha content in the soleus (SOL). After running, PGC-1alpha content in EPI was unchanged, whereas a 107% increase in PGC-1alpha content was observed in SOL 6 h after running. Furthermore, in EPI and SOL as well as other muscles (triceps, plantaris, red and white gastrocnemius), PGC-1alpha expression was enhanced concomitant with reduced glycogen postexercise, suggesting that expression of PGC-1alpha occurs in skeletal muscle recruited during exercise. PGC-1alpha content in EPI was increased after 18-h in vitro incubation with 0.5 mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and 4 mM caffeine. However, AICAR incubation did not affect PGC-1alpha content in the SOL, whereas caffeine incubation increased it. These results suggest that exercise-induced PGC-1alpha expression in skeletal muscle may be mediated by at least two exercise-induced signaling factors: AMPK activation and Ca2+ elevation. The number of factors involved (both AMPK and Ca2+, or Ca2+ only) in exercise-induced PGC-1alpha expression may differ among muscles.  相似文献   

15.
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1-30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (approximately 55%) in mammalian and amphibian channels. Two amplitudes, differing by approximately 35%, were found in amphibian channel studies, probably corresponding to alpha and beta RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (approximately 40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.  相似文献   

16.
Disulfonic stilbenes combine with the carrier protein involved in anion transport and inhibit the exchange of Cl- for HCO3- in a variety of biomembranes. Our aim was to determine whether such a mechanism is operative in the regulation of cerebrospinal fluid (CSF) [HCO3-] in metabolic alkalosis. In anesthetized, curarized, and artificially ventilated dogs either mock CSF (group I, 9 dogs) or mock CSF containing SITS, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (group II, 7 dogs) was periodically injected into both lateral cerebral ventricles. During 6 h of isocapnic metabolic alkalosis, produced by intravenous infusion of Na2CO3 solution, plasma [HCO3-] was increased by approximately 14 meq/l in both groups. In SITS-treated animals the mean cisternal CSF [HCO3-] increased by 7.7 meq/l after 6 h, and this was significantly higher than the respective increment, 3.5 meq/l, noted in the control group. Increments in CSF [HCO3-] in both groups were reciprocated by decrements in CSF [Cl-] with CSF [Na+] remaining unchanged. Cisternal CSF PCO2 and lactate concentrations showed similar increments in both groups. It is hypothesized that in metabolic alkalosis a carrier transports HCO3- out of cerebral fluid in exchange for Cl- and that SITS inhibits this mechanism. The efflux of HCO3- out of CSF in metabolic alkalosis would minimize the rise in CSF [HCO3-] brought about by HCO3-] influx from blood into CSF and therefore contributes to the CSF [H+] homeostasis.  相似文献   

17.
In endurance trained (TR) and untrained (UTR) rats heart rate (HR) and respiratory rate (RR) were recorded during perfusion of the circulatorily isolated hind leg of the rat with exercise simulating modified tyrode solutions (TR:n = 10, UTR:n = 10; compare part I). During the 20 min test period and the preceding and succeeding periods of control perfusions with an unmodified tyrode solution, [lactate], pH, [K+], [Na+], PO2 and PCO2 were measured in the outflow of the femoral vein. In 3 experimental series: (1) hypoxic tyrode solution enriched with lactic acid (15 mmol.l-1), (2) normoxic solution with lactic acid, (3) hypoxic solution without lactic acid, were applied. The outflow parameters were cross correlated with both HR and RR. The analysis revealed a significant temporal relationship between [lactate], pH, PO2, PCO2 and [K+] and both HR and RR. In the trained rats no temporal correlation between either of the outflow and reflex parameters could be determined. This result was not due to low [lactate], but was also found during perfusion with lactic acid. In all 3 test conditions [lactate] in untrained individuals was best correlated with both HR and RR. Although the correlation peaks of the respiratory response, but not of the HR response were definitely lower in normoxic lactic and perfusion than in the two other experimental conditions, both inter- and intraindividual correlation analyses revealed a high degree of interdependence between respiratory and cardiac responses.  相似文献   

18.
The rate-limiting enzyme in lipolysis, adipose triglyceride lipase (ATGL), is activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 (G0S2) protein. It is speculated that inhibition of ATGL is through a dose dependent manner of relative G0S2 protein content. There is little work examining G0S2 expression in lipolytic tissues, and the relative expression across oxidative tissues such as skeletal muscle has not yet been described. Three muscles, soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) were excised from 57-day old male Sprague-Dawley rats (n = 9). QRT-PCR was used for mRNA analysis, and western blotting was conducted to determine protein content. ATGL and G0S2 protein content were both greatest in the lipolytic SOL, with the least amount of both ATGL and G0S2 protein content found in the WG. CGI-58 protein content however did not mirror ATGL and G0S2 protein content, since the RG had the greatest CGI-58 protein content when compared to the SOL and WG. When comparing our tissues based on CGI-58-to-ATGL ratio and G0S2-to-ATGL ratio, it was discovered that contrary to oxidative demand, the glycolytic WG had the greatest activator CGI-58-to-ATGL ratio with the oxidative SOL having the least, and no differences in G0S2-to-ATGL across the three muscle types. These data suggest that the content of G0S2 relative to the lipase in skeletal muscle would not predict lipolytic potential.  相似文献   

19.
To investigate the interactions between the systems that contribute to acid-base homeostasis after severe exercise, we studied the effects of carbonic anhydrase inhibition on exchange of strong ions and CO2 in six subjects after 30 s of maximal isokinetic cycling exercise. Each subject exercised on two randomly assigned occasions, a control (CON) condition and 30 min after intravenous injection of 1,000 mg acetazolamide (ACZ) to inhibit blood carbonic anhydrase activity. Leg muscle power output was similar in the two conditions; peak O2 uptake (VO2) after exercise was lower in ACZ (2,119 +/- 274 ml/min) than in CON (2,687 +/- 113, P less than 0.05); peak CO2 production (VCO2) was also lower (2,197 +/- 241 in ACZ vs. 3,237 +/- 87 in CON, P less than 0.05) and was accompanied by an increase in the recovery half-time from 1.7 min in CON to 2.3 min in ACZ. Whereas end-tidal PCO2 was lower in ACZ than in CON, arterial PCO2 (PaCO2) was higher, and a large negative end-tidal-to-arterial difference (less than or equal to 20 Torr) was present in ACZ on recovery. In ACZ, postexercise increases in arterial plasma [Na+] and [K+] were greater but [La-] was lower. Arteriovenous differences across the forearm showed a greater uptake of La- and Cl- in CON than in ACZ. Carbonic anhydrase inhibition with ACZ, in addition to impairing equilibration of the CO2 system to the acid-base challenge of exercise, was accompanied by changes in equilibration of strong inorganic ions. A lowered plasma [La-] was not accompanied by greater uptake of La- by inactive muscle.  相似文献   

20.
Calil CM  Marcondes FK 《Life sciences》2006,79(18):1712-1719
Rat swimming models have been used in studies about stress and depression. However, there is no consensus about interpreting immobility (helplessness or adaptation) in the literature. In the present study, immobility time, glucose and glycogen mobilization, corticosterone and the effect of desipramine and diazepam were investigated in two different models: swimming stress and the forced swimming test. Immobility time was lower in swimming stress than in the forced swimming test. Both swimming models increased corticosterone levels in comparison with control animal levels. Moreover, swimming stress induced higher corticosterone levels than the forced swimming test did [F(2,14)=59.52; p<0.001]. Liver glycogen content values differed from one another (swimming stress相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号