首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Periodontal mechanosensitive (PM) units were recorded from the trigeminal spinal tract nucleus (Vst) of the cat. The Vst is divided into three subnuclei: oralis (Vo), interpolaris (Vi), and caudalis (Vc). The receptive fields of PM units in Vo and Vi were arranged in a dorsoventral sequence in the mandibular to maxillary divisions, and those in Vc were arranged in a mediolateral sequence. The majority of Vo units were single-tooth ones, whereas more than half the Vi units and all the Vc ones were multitooth units. The PM units in each subnucleus were predominantly responsive to canine tooth stimulation. Most of the PM units in Vo and Vi gave sustained responses to pressure applied to the tooth, were directionally selective, and were most actively excited by canine tooth stimulation in the caudomedial or rostrolateral direction. Vc units, however, were transient. The threshold intensity for firings by canine tooth stimulation was less than 0.05 N. These findings indicate that only the response properties of PM units in the rostral part of Vst resemble those of the trigeminal main sensory nucleus neurons and primary afferent nerves.  相似文献   

2.
We investigated the action of the new hypothalamic proline-rich peptide (PRP-1), normally produced by neurosecretory cells of hypothalamic nuclei (NPV and NSO), 3 and 4 weeks following rat sciatic nerve transection. The impulse activity flow of interneurons (IN) and motoneurons (MN) on stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius – G) and extensor (n. peroneus communis – P) nerves of both injured and symmetric intact sides of spinal cord (SC) was recorded in rats with daily administration of PRP-1 (for a period of 3 weeks) and without it (control). On the injured side of SC in control, there were no responses of IN and MN on ipsilateral G and P stimulation, while responses were elicited on contralateral nerve stimulation. The neuron responses on the intact side of SC were revealed in a reverse ratio. Thus, there were no effects upon stimulation of the injured nerve distal stump in the control because of the absence of fusion between transected nerve stumps. This was also testified by the atrophy of the distal stump and the absence of motor activity of the affected limb. In PRP-1-treated animals, the responses of SC IN and MN in postaxotomy 3 weeks on the injured side of SC at ipsilateral nerve stimulation and on the intact side at contralateral nerve stimulation were recorded because of the obvious fusion of the severed nerve stumps. The histochemical data confirmed the electrophysiological findings. Complete coalescence of transected fibers together with restoration of the motor activity of the affected limb provided evidence for reinnervation on the injured side. Thus, it may be concluded that PRP-1 promotes nerve regeneration and may be used clinically to improve the outcome of peripheral nerve primary repair.  相似文献   

3.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

4.
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP) - induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN) transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG) neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect dynamic changes in TRPV1 expression, in various pathological conditions.  相似文献   

5.
目的:检测脊神经切断大鼠背根节(DRG)神经元重复放电能力和钠电流的变化,并研究介导其电流变化的钠通道亚型的表达情况。方法:脊神经切断术后2~8d慢性痛大鼠模型背根节急性分离,对中等直径DRG神经元运用全细胞膜片钳技术记录神经元放电和钠电流的变化。对背根节神经元进行RT-PCR检测,分析其钠通道亚型的表达情况。结果:电流钳下,实验组DRG神经元在电流刺激下产生重复放电,而对照组神经元多诱发单个动作电位,电压钳记录发现实验组背根节神经元快钠电流和持续性钠电流幅值均明显大于对照组,PCR结果显示,Nav1.3、Nav1.7和Nav1.8通道亚型mRNA表达显著增高。结论:钠通道介导了脊神经受损模型的DRG神经元兴奋性增高,持续性钠电流可能通过调节阈下膜电位振荡的产生调节神经元兴奋性。  相似文献   

6.
The number of c-fos protein-like immunoreactive (Fos-LI) cells in the gracile nucleus was determined after electrical stimulation at Aα/Aβ-fiber strength of the normal and of the previously injured sciatic nerve in adult rats. No Fos-LI cells were seen after electrical stimulation of the noninjured sciatic nerve, or after sciatic nerve injury without electrical stimulation. However, stimulation 21 days after sciatic nerve transection resulted in numerous Fos-LI cells in the ipsilateral gracile nucleus. Combined Fos immunocytochemistry and retrograde labeling from the thalamus showed that the majority (76%; range = 70–80%) of the cells in the gracile nucleus that expressed Fos-LI after nerve injury projected to the thalamus. The results indicate that morphological, biochemical, and physiological alterations in primary sensory central endings and second-order neurons, which have earlier been demonstrated in the dorsal column nuclei after peripheral nerve injury, are accompanied by changes in the c-fos gene activation pattern after stimulation of the injured sciatic nerve. A substantial number of the c-fos-expressing neurons project to the thalamus.  相似文献   

7.
Unlike in mammals, fish retinal ganglion cells (RGCs) have a capacity to repair their axons even after optic nerve transection. In our previous study, we isolated a tissue type transglutaminase (TG) from axotomized goldfish retina. The levels of retinal TG (TG(R)) mRNA increased in RGCs 1-6weeks after nerve injury to promote optic nerve regeneration both in vitro and in vivo. In the present study, we screened other types of TG using specific FITC-labeled substrate peptides to elucidate the implications for optic nerve regeneration. This screening showed that the activity of only cellular coagulation factor XIII (cFXIII) was increased in goldfish optic nerves just after nerve injury. We therefore cloned a full-length cDNA clone of FXIII A subunit (FXIII-A) and studied temporal changes of FXIII-A expression in goldfish optic nerve and retina during regeneration. FXIII-A mRNA was initially detected at the crush site of the optic nerve 1h after injury; it was further observed in the optic nerve and achieved sustained long-term expression (1-40days after nerve injury). The cells producing FXIII-A were astrocytes/microglial cells in the optic nerve. By contrast, the expression of FXIII-A mRNA and protein was upregulated in RGCs for a shorter time (3-10days after nerve injury). Overexpression of FXIII-A in RGCs achieved by lipofection induced significant neurite outgrowth from unprimed retina, but not from primed retina with pretreatment of nerve injury. Addition of extracts of optic nerves with injury induced significant neurite outgrowth from primed retina, but not from unprimed retina without pretreatment of nerve injury. The transient increase of cFXIII in RGCs promotes neurite sprouting from injured RGCs, whereas the sustained increase of cFXIII in optic nerves facilitates neurite elongation from regrowing axons.  相似文献   

8.
In order to establish that the pineal gland is innervated by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibers originating in the trigeminal ganglion, ophthalmic and maxillary nerves were transected by using a subtemporal fossa approach. The number of PACAP-immunoreactive nerve fibers in the pineal gland of rats with a total transection of the nerve was compared with that of rats without surgery. In the operated rat, PACAP-immunoreactive nerve fibers in the superficial pineal decreased remarkably, indicating that the trigeminal ganglion was the origin of these nerve fibers. This research provides evidence supporting the hypothesis that PACAP-immunoreactive nerves regulate the synthesis and/or secretion of melatonin in the pineal gland.  相似文献   

9.
Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2?weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2?weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve.  相似文献   

10.
In adult rats, transection of the infraorbital nerve and subsequent regeneration have been shown to result in altered somatotopic organization and changes in response properties of primary afferents within the trigeminal ganglion. The present study examined how these changes affect the postsynaptic targets of these neurons within subnucleus interpolaris of the trigeminal brainstem. Extra-cellular recordings were made from 330 cells in normal rats and 424 cells in rats surviving 57-290 days after transection of the infraorbital nerve in adulthood. Adult infraorbital nerve transection resulted in significant functional reorganization within subnucleus interpolaris. Relative to normal rats, the major changes can be summarized as follows: (1) a decrease in the dorsoventral extent of infraorbital representation; (2) a disruption of inter- and intradivisional somatotopic organization; (3) an increase in the proportion of cells with no discernible receptive field; (4) an increase in receptive field size for cells with infraorbital receptive field components; (5) the appearance of a significant proportion of cells with discontinuous receptive fields; (6) an increase in the proportion of cells exhibiting interdivisional convergence; (7) significant changes in the types of receptor surfaces activating local-circuit neurons with infraorbital receptive field components; (8) the appearance of a significant proportion of cells exhibiting convergence of different receptor surfaces; (9) significant changes in the dynamic response characteristics of cells with infraorbital receptive field components; and (10) an increase in the proportion of spontaneously active infraorbital-responsive cells. The changes observed were quite similar to those reported in adult subnucleus interpolaris following neonatal infraorbital nerve transection. The majority of changes observed in both studies can be most parsimoniously explained by alterations of primary afferents. However, central mechanisms may be more likely substrates for others. Regardless of the mechanism, the mature rodent trigeminal system appears capable of considerable functional reorganization following peripheral nerve damage.  相似文献   

11.
To evaluate the involvement of the mitogen-activated protein kinase (MAPK) cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK) in trigeminal spinal subnucleus caudalis (Vc) neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI). The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR) cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.  相似文献   

12.
In adult rats, transection of the infraorbital nerve and subsequent regeneration have been shown to result in altered somatotopic organization and changes in response properties of primary afferents within the trigeminal ganglion. The present study examined how these changes affect the postsynaptic targets of these neurons within subnucleus interpolaris of the trigeminal brainstem. Extracellular recordings were made from 330 cells in normal rats and 424 cells in rats surviving 57-290 days after transection of the infraorbital nerve in adulthood. Adult infraorbital nerve transection resulted in significant functional reorganization within subnucleus interpolaris. Relative to normal rats, the major changes can be summarized as follows: (1) a decrease in the dorsoventral extent of infraorbital representation; (2) a disruption of inter- and intradivisional somatotopic organization; (3) an increase in the proportion of cells with no discernible receptive field; (4) an increase in receptive field size for cells with infraorbital receptive field components; (5) the appearance of a significant proportion of cells with discontinuous receptive fields; (6) an increase in the proportion of cells exhibiting interdivisional convergence; (7) significant changes in the types of receptor surfaces activating local-circuit neurons with infraorbital receptive field components; (8) the appearance of a significant proportion of cells exhibiting convergence of different receptor surfaces; (9) significant changes in the dynamic response characteristics of cells with infraorbital receptive field components; and (10) an increase in the proportion of spontaneously active infraorbital-responsive cells. The changes observed were quite similar to those reported in adult subnucleus interpolaris following neonatal infraorbital nerve transection. The majority of changes observed in both studies can be most parsimoniously explained by alterations of primary afferents. However, central mechanisms may be more likely substrates for others. Regardless of the mechanism, the mature rodent trigeminal system appears capable of considerable functional reorganization following peripheral nerve damage.  相似文献   

13.
The expression of the immediate early gene, c-fos, was used to determine the distribution of brainstem neurons activated by stimulation of the distal hypoglossal nerve (XIIn) trunk. The traditional view of the XIIn is one of purely motor function; however, stimulation of XIIn excites neurons in the trigeminal spinal nucleus. The rationale for this study was to use c-fos expression as a marker for postsynaptic activity to define the pattern of brainstem neurons excited by XIIn stimulation. It was further hypothesized that if the afferent fibers that course within XIIn supply deep lingual tissues, then c-fos expression after direct stimulation of XIIn should display a pattern similar to that seen after chemical irritant stimulation of the deep tongue muscle. In barbiturate-anesthetized male rats electrical stimulation of XIIn produced a significant increase in Fospositive neurons in the dorsal paratrigeminal nucleus (dPa5) and laminae I-II of caudal subnucleus caudalis (Vc) and upper cervical dorsal horn. Mustard oil injection into the deep tongue muscle also produced an increase in c-fos expression in dPa5; however, the highest density of expression occurred in laminae I-II at the dorsomedial aspect of rostral Vc. Both electrical stimulation of XIIn and mustard oil stimulation of the deep tongue increased c-fos expression in the caudal ventrolateral medulla, an autonomic relay nucleus. These results suggest that one site of innervation for afferent fibers that travel within the distal trunk of XIIn is to supply the deep tongue muscle and to terminate in the dPa5. A second group of postsynaptic neurons activated only by XIIn stimulation was located in lamina I-II in caudal portions of Vc and upper cervical dorsal horn, a laminar distribution consistent with a role for XIIn afferents in sensory or autonomic aspects of lingual function.  相似文献   

14.
The expression of the immediate early gene, c-fos, was used to determine the distribution of brainstem neurons activated by stimulation of the distal hypoglossal nerve (XIIn) trunk. The traditional view of the XIIn is one of purely motor function; however, stimulation of XIIn excites neurons in the trigeminal spinal nucleus. The rationale for this study was to use c-fos expression as a marker for postsynaptic activity to define the pattern of brainstem neurons excited by XIIn stimulation. It was further hypothesized that if the afferent fibers that course within XIIn supply deep lingual tissues, then c-fos expression after direct stimulation of XIIn should display a pattern similar to that seen after chemical irritant stimulation of the deep tongue muscle. In barbiturate-anesthetized male rats electrical stimulation of XIIn produced a significant increase in Fos-positive neurons in the dorsal paratrigeminal nucleus (dPa5) and laminae I-II of caudal subnucleus caudalis (Vc) and upper cervical dorsal horn. Mustard oil injection into the deep tongue muscle also produced an increase in c-fos expression in dPa5; however, the highest density of expression occurred in laminae I-II at the dorsomedial aspect of rostral Vc. Both electrical stimulation of XIIn and mustard oil stimulation of the deep tongue increased c-fos expression in the caudal ventrolateral medulla, an autonomic relay nucleus. These results suggest that one site of innervation for afferent fibers that travel within the distal trunk of XIIn is to supply the deep tongue muscle and to terminate in the dPa5. A second group of postsynaptic neurons activated only by XIIn stimulation was located in lamina I-II in caudal portions of Vc and upper cervical dorsal horn, a laminar distribution consistent with a role for XIIn afferents in sensory or autonomic aspects of lingual function.  相似文献   

15.
Electrophysiological studies (Sessle, 1987, 1991) suggest that trigeminal deafferenting injuries can cause an "unmasking" of existing but normally suppressed convergent inputs to the spinal trigeminal nucleus, including many that arise from the cervical spinal cord. However, the spatial arrangement of this projection has not been examined, particularly with reference to nociceptive components that might become involved in pathological changes leading to chronic pain. Therefore, the purpose of this study was to apply selective interruptions of the trigeminal and/or cervical primary afferent inputs to the spinal trigeminal subnucleus caudalis (Vc) in the cat, followed by (1) demonstration and quantification of axonal degeneration in the spinal trigeminal tract to determine the extent of trigeminal-cervical primary afferent overlap; and (2) an analysis of lesion-induced alterations in the distribution of calcitonin gene-related peptide immunoreactivity (CGRP-IR) in laminae I and II of Vc, since recent evidence strongly suggests that CGRP is involved in pathophysiological elevations of central nervous system neuronal excitability. Degenerating fibers were found throughout the spinal tract following a trigeminal rhizotomy or tractotomy, with the largest numbers adjacent to the rostral two-thirds of Vc, but with a significant number extending caudally to at least the level of C2. CGRP-IR was reduced or eliminated from the rostral one-third and periobex region of Vc, except for a dorsomedial zone that was minimally affected. Retention of CGRP-IR was greater at more caudal levels. Following a combined trigmeninal and cervical tractotomy, fiber degeneration was massive throughout the spinal tract, yet a population of small myelinated fibers persisted at 60 days after surgery. Concomitantly, CGRP-IR was profoundly reduced throughout Vc, except for a small dorsomedial zone of retention, which became more extensive caudally. A cervical tractotomy resulted in moderate numbers of degenerating fibers adjacent to the caudal one-third of Vc, and this number declined rostrally; however, degenerating fibers could be seen at the level of the obex. CGRP-IR was reduced in the dorsomedial and ventrolateral zones of Vc, particularly in its caudal one-third. Electron-microscopic analysis revealed a population of CGRP-IR boutons, most of which were of the simple axodendritic type with asymmetrical contacts. A few examples of axoaxonic contacts were observed. Loss of labeled boutons observed with the electron microscope was consistent with light-microscopic quantitative results. Those boutons that were retained were variable in size and displayed simple axodendritic contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7%) and unmyelinated fibers (76.3%), suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.  相似文献   

17.
Single unit responses elicited through noxious mechanical stimulation of orofacial receptive fields were recorded, with glass micro-electrodes, within the rat ventrobasal complex of the thalamus. The evoked activities were compared before and after de-afferentation of the caudal sub-nucleus by trigeminal tractotomy at the level of the obex. Only units responding to noxious stimulation of oral receptive fields were unaffected by tractotomy. These results provide evidence that the rostral part of the spinal nucleus is involved in trigeminal painful sensation.  相似文献   

18.
Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM+) resulted in enhanced healing of the tooth‐supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM+, dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM+ were similar to the normal un‐transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM+ treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM+ increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM+ dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers.  相似文献   

19.
Static contraction of skeletal muscle elicits a reflex increase in cardiovascular function. Likewise, noxious stimuli activate somatic nociceptors eliciting a reflex increase in cardiovascular function. On the basis of recent work involving spinothalamic cells in the dorsal horn, we hypothesized that the dorsal horn cells involved in the aforementioned reflexes would be sensitized by applying capsaicin (Cap) to a peripheral nerve. If correct, then Cap would enhance the cardiovascular increases that occur when these reflexes are evoked. Cats were anesthetized, and the popliteal fossa was exposed. Static contraction was induced by electrical stimulation of the tibial nerve at an intensity that did not directly activate small-diameter muscle afferent fibers, whereas nociceptors were stimulated by high-intensity stimulation (after muscle paralysis) of either the saphenous nerve (cutaneous nociceptors) or a muscular branch of the tibial nerve (muscle nociceptors). The reflex cardiovascular responses to these perturbations (contraction or nociceptor stimulation) were determined before and after direct application of Cap (3%) onto the common peroneal nerve, using a separate group of cats for each reflex. Compared with control, application of Cap attenuated the peak change in mean arterial pressure (MAP) evoked by static contraction (DeltaMAP in mmHg: 38 +/- 10 before and 24 +/- 8 after ipsilateral Cap; 47 +/- 10 before and 33 +/- 10 after contralateral Cap). On the other hand, Cap increased the peak change in MAP evoked by stimulation of the saphenous nerve from 57 +/- 8 to 77 +/- 9 mmHg, as well as the peak change in MAP elicited by activation of muscle nociceptors (36 +/- 9 vs. 56 +/- 14 mmHg). These results show that the reflex cardiovascular increases evoked by static muscle contraction and noxious input are differentially affected by Cap application to the common peroneal nerve. We hypothesize that a Cap-induced alteration in dorsal horn processing is the locus for this divergent effect on these reflexes.  相似文献   

20.
Following complete transection of the thoracic spinal cord at various times during embryonic development, chick embryos and posthatched animals exhibited various degrees of anatomical and functional recovery depending upon the age of injury. Transection on embryonic day 2 (E2), when neurogenesis is still occurring and before descending or ascending fiber tracts have formed, produced no noticeable behavioral or anatomical deficits. Embryos hatched on their own and were behaviorally indistinguishable from control hatchlings. Similar results were found following transection on E5, an age when neurogenesis is complete and when ascending and descending fiber tracts have begun to project through the thoracic region. Within 48 h following injury on E5, large numbers of nerve fibers were observed growing across the site of transection. By E8, injections of horse-radish peroxidase (HRP) administered caudal to the lesion, retrogradely labelled rostral spinal and brainstem neurons. Embryos transected on E5 were able to hatch and could stand and locomote posthatching in a manner that was indistinguishable from controls. Following spinal cord transections on E10, anatomical recovery of the spinal cord at the site of injury was not quite as complete as after E5 transection. Nonetheless, anatomical continuity was restored at the site of injury, axons projected across this region, and rostral spinal and brainstem neurons could be retrogradely labelled following HRP injections administered caudal to the lesion. At least part of this anatomical recovery may be mediated by the regeneration or regrowth of lesioned axons. Although none of the embryos transected on E10 that survived to hatching were able to hatch on their own, because several sham-operated embryos were also unable to hatch, we do not attribute this deficit to the spinal transection. When E10-transected embryos were aided in escaping from the shell, they were able to support their own weight, could stand, and locomote, and were generally comparable, behaviorally, to control hatchlings. Repair of the spinal cord following transection on E15 was considerably less complete compared to embryos transected on E2, E5, or E10. However, in some cases, a degree of anatomical continuity was eventually restored and a few spinal neurons rostral to the lesion could be retrogradely labelled with HRP. By contrast, labelled brainstem neurons were never observed following E15 transection. E15 transected embryos were never able to hatch on their own, and when aided in escaping from the shell, the hatchlings were never able to stand, support their own weight or locomote.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号