首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.  相似文献   

2.
Young adult albino rats of Wistar strain were used for the present study. 0.5 to 15 microliters of 20-50% of horseradish peroxidase (HRP) were injected into each individual muscle of mastication to label neurons in the trigeminal motor nucleus (TMON) for light microscopic study. The results reveal that: (1) Many HRP-labeled, multipolar neurons are observed in the motor nucleus in each jaw-closing muscle (JCM) with less in each the jaw-opening muscle (JOM). (2) The motor neurons innervating each masticatory muscle in the motor nucleus show a somatotopic arrangement: (a) those innervating the temporalis muscle are located in the medial and dorsomedial parts; (b) those innervating the masseter muscle are located in the intermediate and lateral; (c) those innervating the medial and lateral pterygoid muscles are located in the lateral, ventrolateral and ventromedial parts, respectively; and (d) those innervating the mylohyoid and the anterior belly of the digastric muscles are located in the most ventromedial part of the caudal one-third of the nucleus. Axons of most masticatory motor neurons run ventrolaterally in between the motor and the chief sensory nuclei of the trigeminal nerve. However, those of the mylohyoid and anterior belly of the digastric muscles ascend dorsally to the dorsal aspect of the caudal nucleus and then turn ventrolaterally to join the motor root of the trigeminal nerve. Furthermore, the dendrites of the motor neuron of JCM converge dorsocaudally to the supratrigeminal region. The diameters of neurons of each JCM display a bimodal distribution. However, an unimodal distribution is present in the motor neurons from each JCM. It is suggested that the motor nucleus innervating the JCM is comprised of comprised of alpha- and gamma-motor neurons. It, thus, may provide a neural basis for the regulation of the muscle tone and biting force.  相似文献   

3.
The neurons innervating the muscles of mastication were labeled retrogradely with horseradish peroxidase (HRP) which was injected into each muscle of mastication of the rats. The TMB-HRP labeled neurons were for light microscopic and DAB-HRP labeled neurons for electron microscopic study. Many HRP-labeled mesencephalic neurons were observed in the trigeminal mesencephalic nucleus (TMEN) after HRP injection in jaw-closing muscles (JCM). On the other hand, no labeled neurons were found following the application of HRP to the lateral pterygoid and the anterior belly of the digastric muscles, with the exception of a very few from the mylohyoid muscle. The latter three muscles were jaw-opening muscles (JOM). The mesencephalic neurons of each JCM in the TMEN were rather randomly distributed, although they were concentrated more in the caudal region of this nucleus. These neurons were typically unipolar, with spherical to oval perikarya. Each neuron had a single process which coursed caudolaterally to join the mesencephalic tract of the trigeminal nerve. Ultrastructurally, mesencephalic masticatory neurons had a rather regular nucleus locating either centrally or eccentrically in the perikaryon, which is rather plump. The cytoplasm was endowed with very well developed Golgi apparatus and rough endoplasmic reticulum. Neurofilaments, varying in number, intermingled mostly with the Golgi apparatus in the cytoplasm. Somatic spines were frequently observed; however, synapses abutting upon the soma were few. Macula adherens-like structures were occassionally encountered in the contact zone between two cells.  相似文献   

4.
Transganglionic transport of horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) entrapped in hypoallergenic polyacrylamide gel was used to study the patterns of termination of primary afferents that innervate the upper and lower tooth pulps within the trigeminal sensory nuclear complex (TSNC) of the monkey. HRP:WGA injections were also made into the lower incisors and molars, in order to examine the topographic arrangement of pulpal afferent projections. HRP-labeled pulpal afferents innervating lower and upper teeth projected ipsilaterally to the rostral subnucleus dorsalis (Vpd) and caudal subnucleus ventralis (Vpv) of the nucleus principalis (Vp); the rostrodorsomedial (Vo.r) and dorsomedial (Vo.dm) subdivisions of the nucleus oralis (Vo); the dorsomedial subdivision of the nucleus interpolaris (Vi); and laminae I—II and/or V of the nucleus caudalis (Vc) at its rostralmost level. The HRP-labeled terminals from upper and lower pulpal afferents formed a rostrocaudal column from the midlevel of Vp to the rostral tip of Vc. The label in Vp and Vo was considerably dense, but the column of terminals was interrupted at the Vpd-Vpv transition. The label in Vi and Vc was much less dense compared to that in the rostral nuclei, and the column of terminals was interrupted frequently. The representation of the upper and lower teeth in TSNC was organized in a somatotopic fashion that varied from one subdivision to the next, though their terminal zones overlapped within Vpd. The upper and lower teeth were represented in Vpv, Vo.r, Vo.dm, Vi, and Vc in a ventrodorsal, dorsoventral, lateromedial, lateromedial, and lateromedial sequence, respectively. Topographic arrangement was also noticed for the projections of pulpal afferents from the lower incisors and molars: The representations of the lower incisors and molars in Vpv, Vo.r, Vo.dm, Vi, and Vc were organized in a lateromedial, dorsoventral, ventrodorsal, ventrodorsal, and lateromedial sequence, respectively. The present results indicating sparse projections from pulpal afferents in the monkey's Vc are in good correspondence with a clinical report that trigeminal tractotomy just rostral to the obex has no significant effect on dental pain perception in patients. Furthermore, the present study indicates that projection patterns of pulpal afferents—which include the termination sites, the density of terminations between nuclei, and topographic arrangement—differ among animal species.  相似文献   

5.
The present study was an attempt to identify the location of genioglossal respiratory and swallowing motoneuron cell bodies within the hypoglossal (XII) nucleus using both electrophysiological and morphological studies. The genioglossus muscle is innervated by the genioglossal branch of the medial XII nerve. At the entrance to the muscle, the genioglossal branch divides in the directions of the mandible and tongue. Five of five rats displayed both respiratory-related and swallowing-related bursts in the medial XII branch towards the mandible. All five rats also displayed swallowing-related bursts in the medial XII branch towards the tongue. In addition, horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) was injected into the proximal cut ends of each branch. When HRP:WGA was injected into the branch in the direction of the mandible, HRP-labeled cells were detected in the lateral region of the ventromedial subnucleus in the XII nucleus, extending from 0.7 to 1.2 mm rostral to the obex. On the other hand, after injection into the branch in the direction of the mandible, HRP-labeled cells were detected in the ventromedial subnucleus of the XII nucleus, extending from 0.3 to 1.2 mm rostral to the obex. These results provide evidence that genioglossal respiration-related and swallowing-related motoneurons are located in different portions within the ventromedial subnucleus of the XII nucleus.  相似文献   

6.
The present study was an attempt to identify the location of genioglossal respiratory and swallowing motoneuron cell bodies within the hypoglossal (XII) nucleus using both electrophysiological and morphological studies. The genioglossus muscle is innervated by the genioglossal branch of the medial XII nerve. At the entrance to the muscle, the genioglossal branch divides in the directions of the mandible and tongue. Five of five rats displayed both respiratory-related and swallowing-related bursts in the medial XII branch towards the mandible. All five rats also displayed swallowing-related bursts in the medial XII branch towards the tongue. In addition, horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) was injected into the proximal cut ends of each branch. When HRP:WGA was injected into the branch in the direction of the mandible, HRP-labeled cells were detected in the lateral region of the ventromedial subnucleus in the XII nucleus, extending from 0.7 to 1.2 mm rostral to the obex. On the other hand, after injection into the branch in the direction of the mandible, HRP-labeled cells were detected in the ventromedial subnucleus of the XII nucleus, extending from 0.3 to 1.2 mm rostral to the obex. These results provide evidence that genioglossal respiration-related and swallowing-related motoneurons are located in different portions within the ventromedial subnucleus of the XII nucleus.  相似文献   

7.
Injections of horseradish peroxidase (HRP) were made into the ipsilateral temporal muscle and contralateral masseter muscle of 10 cats in order to identify and characterize neurons in the nucleus of the mesencephalic root of the trigeminal nerve that innervate muscle receptors in the orofacial periphery. Neurons labelled by HRP injections and unlabelled cells from 5 control cats were measured with a computer-based image analyzer, and their position was mapped on a stereotaxic graph. Cells that innervate the masseter and temporal muscles were identified throughout the rostrocaudal extent of the nucleus. There was no indication of a somatotopic pattern nor of a specific segregation within the nucleus for cells innervating muscle receptors. The nucleus contained small, rounded unipolar neurons located primarily in the dorsal border of the periaqueductal gray (PAG) matter in the rostral part of the nucleus and larger oval unipolar neurons which were scattered throughout the nucleus, but were predominant in the pontine portion of the nucleus. HRP injections labelled both large and small cells, as well as occasional multipolar cells. The last-mentioned tended to be located in the lateral margins of the PAG. The mean geometric values obtained for the control group were: area 552.7 microns2 perimeter 110.3 microns; maximum diameter 36.0 microns. and diameter of an equivalent circle 26.1 microns. The mean values of the labelled neurons were: area 606.6 microns2; perimeter 100.1 microns; maximum diameter 36.0 microns, and diameter of an equivalent circle 27.2 microns.  相似文献   

8.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

9.
The distribution in the spinal cord of the trigeminal primary projections in the frog Rana ridibunda was studied by means of the anterograde transport of horseradish peroxidase (HRP). Upon entering the medulla via the single trigeminal root, a conspicuous descending tract that reaches the cervical spinal cord segments is established. This projection arises in the ophthalmic (V1), maxillary (V2), and mandibular (V3) trigeminal nerve subdivisions. In the spinal cord, only a minor somatotopic arrangement of the trigeminal fibers was observed, with the fibers arising in V3 terminating somewhat more medially than those from V1 and V2. A dense projection to the medial aspect of the spinal cord, above the central canal, primarily involves V3. Each trigeminal branch sends projections at cervical levels to the contralateral dorsal field, and those from V2 are most abundant. Bilateral experiments with HRP application show convergence of primary trigeminal and spinal afferents within the dorsal field of the spinal cord. The pattern of arrangement of the trigeminal primary afferent fibers in the spinal cord of this frog largely resembles that of amniotes. However, the organization seems simpler and the slight somatotopic distribution of V1, V2, and V3 fibers is similar to the condition in other anamniotes. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

11.
Projections into rat ventromedial hypothalamus were studied with retrograde transport of horseradish peroxidase (HRP). Following injection of HRP into ventromedial hypothalamus, labeled neurons were found in cortical and medial amygdaloid nuclei, ipsilateral mediodorsalis thalamus (MD), dorsal raphe nucleus, and contralateral sensorimotor cortex. Futhermore, labeled axons that connect directly amygdala with hypothalamus (DAH) also were found.  相似文献   

12.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

13.
Extraocular muscle motoneurones were localised in the oculomotor nucleus (ON), trochlear nucleus (TN) and abducens nucleus (AN) in the marmoset brain using the horseradish peroxidase (HRP) retrograde labelling technique. HRP pellets injected into individual extraocular muscles revealed one or more groups of labelled neurones occupying discrete loci within these nuclei. Relatively little overlap of motoneurone pools was observed, except in the case of the inferior oblique and superior rectus muscles. Injections of HRP into the medial rectus muscle revealed three separate populations of labelled cells in the ipsilateral ON. Motoneurones innervating the inferior rectus muscle were mainly localised in the lateral somatic cell column of the ipsilateral ON. A second smaller grouping was observed in the medial longitudinal fasciculus. The inferior oblique muscle motoneurones were localised in the ipsilateral medial somatic cell column intermingled with motoneurones supplying the superior rectus muscle of the opposite eye. The superior oblique muscle motoneurones occupied the entire TN and the lateral rectus muscle motoneurones the AN. It was concluded that the organisation of nuclei and subnuclei responsible for controlling the extraocular muscles in the marmoset is broadly similar to that of other primates.  相似文献   

14.
The end-structure of afferent axons chronically severed in the rat sciatic nerve or dorsal column (DC) was visualized by centrifugal transport of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA:HRP) injected into the L4 or L5 dorsal root ganglion. Nerve regeneration was prevented and neuroma formation encouraged by tightly ligating the cut nerve end. For the first few weeks postoperative, the time during which afferents trapped in a nerve-end neuroma generate their most intense ectopic impulse barrage, the developing neuroma was dominated by swollen terminal end-bulbs. There was some axonal dying-back, retrograde fiber growth, and terminal sprouting, but little preterminal branching. The rich tangle of fine preterminal branches usually thought of in relation to nerve-end neuromas did not elaborate until several months postoperative, a time when the neuroma is relatively quiescent electrically. Afferents cut in the DC, which never develop dramatic ectopic electrical activity, showed morphological peculiarities similar to nerve-end neuromas during the early postoperative period, including retrograde fiber growth and minimal sprouting. They did not, however, go on to form luxuriant branches. These data provide preliminary clues as to the structure of the ectopic impulse-generating mechanism thought to underlie paresthesias and pain associated with peripheral nerve injury.  相似文献   

15.
Projections from the trigeminal complex to paramedian lobule (PML) were studied in the tree shrew (Tupaia glis) by means of retrograde transport of horseradish peroxidase (HRP). Neurons which project to both dorsal and ventral folia of PML are located primarily in those areas of the trigeminal nuclear complex interpreted as nucleus interpolaris (Vi) and caudal areas of the nucleus oralis (Vo). The majority of HRP-labeled neurons lie in ventral and ventrolateral regions of Vi/Vo. No HRP-reactive cells are present in the principal (Vp), mesencephalic, or motor nuclei nor in nucleus caudalis or rostral portions of oralis. The majority of trigeminocerebellar (TC) cells are found in ipsilateral Vi; however, sparse numbers of labeled somata are present in this subnucleus on the contralateral side. Within Vi/Vo, small fusiform and medium-and large-sized multipolar neurons contain HRP-reaction product. Large multipolar cells are found primarily in ventrolateral portions of Vi/Vo, while medium and small neurons are scattered throughout the ventral half of the nucleus. Small-sized neurons are also present dorsally within Vi/Vo. Axons of labeled TC cells course laterally through the spinal trigeminal tract, enter medial aspects of the restiform body, and arch dorsally into the cerebellum.  相似文献   

16.
Trigeminothalamic projection neurons are important components of the pathways for conscious perception of pain, temperature, and tactile sensation from the orofacial region. The neurotransmitters utilized by trigeminal neurons projecting to the thalamus are unknown. By use of a monoclonal antibody specific for fixative-modified glutamate and a polyclonal antiserum against glutaminase, we recently identified neurons in the trigeminal sensory complex that cocontain glutamate-like immunoreactivity (Glu-LI) and glutaminase-like immunoreactivity. In the present study, we utilized combined retrograde transport-immunohistochemical techniques to localize putative glutamatergic trigeminothalamic neurons.

Following injection of the retrograde tracer, wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP), into the ventroposterior medial thalamus (VPM), the number of neuronal profiles that were double-labeled with WGA:HRP and Glu-LI was greatest in principal sensory nucleus (Pr5), followed by subnuclei interpolaris (Sp51) and caudalis (Sp5C). The average percentages of projection neurons double-labeled with Glu-LI were approximately 60-70% in Pr5 and Sp51 and 40% in Sp5C. The majority of double-labeled profiles in Sp5C were located in the magnocellular layer, as opposed to the marginal and substantia gelatinosa layers. A large injection site that spread into the intralaminar thalamic nuclei and nucleus submedius—areas implicated in the processing of nociceptive information—resulted in an increase in the ratio of single-labeled to double-labeled projection profiles in Sp5C.

These results suggest that glutamate may be the neurotransmitter for a majority of trigeminothalamic projection neurons located in Sp51 and Pr5. However, on the basis of anatomical association, glutamate does not appear to be the major transmitter for neurons in Sp5C that forward nociceptive information to the thalamus.  相似文献   

17.
Horseradish peroxidase (HRP) was injected into either a single maxillary or a single mandibular primary (deciduous) cuspid tooth of 8- to 10-week-old kittens. The large apex of the primary cuspid allowed for some leakage of the HRP from the pulpal chamber to the periodontal ligament (PDL). Thus, the injection procedure resulted in the application of HRP to the PDL as well as to the pulpal tissues. The transganglionic transport of HRP resulted in discrete terminal fields within the spinal trigeminal nucleus (STN) and the main sensory nucleus (MSN). These projections were clearly somatotopically organized within the STN, but less so within MSN. Within pars oralis (PO) and pars interpolaris (PI), mandibular cuspid dental structures (MdCDS) were represented in a dorsal position relative to the maxillary cuspid dental structures (MxCDS), whereas within pars caudalis (PC) and the adjacent reticular formation the somatotopic representation was not dorsoventral, but rather mediolateral, with the MdCDS represented more medially than the MxCDS. Areas of overlap between MxCDS and MdCDS were found within MSN and to a lesser degree within the superficial laminae of PC. In addition, the fiber pathway leading to labeled somata in the mesencephalic trigeminal (Mes V) nucleus was clearly identified. The majority of the fibers traced to the Mes V nucleus exited the spinal trigeminal tract at the level of the transition from PO to the MSN and traversed the nuclear region in a position dorsal to and separate from the trigeminal motor tract. As in STN, fibers within the caudal Mes V tract appeared to be somatotopically organized, with the fibers from the MdCDS generally more dorsal than the ones from the MxCDS. Labeled fibers, some with terminal arbors, were also identified in close association with the trigeminal motor tract. The findings show a complex pattern of central representation in the immature feline central nervous system for deciduous dental structures.  相似文献   

18.
Song G  Li Q  Shao FZ 《生理学报》2001,53(5):391-395
实验在6只成年猫上进行,将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及5-HT免疫组织化学FITC荧光双重标记方法,研究了中缝核5-HT能神经元向脊髓膈神经核的投射,同时观察了延髓膈肌产运动神经元接受5-HT能纤维投射的情况,结果在中缝苍白核观察到较多的HRP-5-HT双标记神经元,在中缝大核,中缝隐核观察到少数散在的双标记神经元,在延髓疑核,孤束核腹外侧区域的HRP单核记神经元(即膈肌前运动神经元)周围观察到5-HT能轴突末梢,结构表明:发自中缝苍白核5-HT能神经元的传出纤维可投射到脊髓膈神经核,延髓膈肌前运动神经元接受5-HT能纤维的传入投射。  相似文献   

19.
蛤蚧豆状核的结构及其与顶盖前端的纤维联系   总被引:1,自引:0,他引:1  
运用Nissl法和辣根过氧化物酶(horseradish peroxidase,HRP)追踪标记技术,研究蛤蚧(Gekko gecko)豆状核的结构及其与顶盖前端的纤维联系。Nissl染色显示,蛤蚧豆状核细胞大小没有明显差别,由背内侧细胞密集部和腹外侧细胞稀疏部组成。将HRP注射于顶盖前端,结果豆状核背内侧部和腹外侧部分别接受同侧顶盖前端脑室内、外侧纤维的传入,核内标记有浓密的神经丛和大量纤维末梢,并在该核腹外侧部及其邻近区域发现少量大胞体标记细胞。推测豆状核腹外侧部的大胞体细胞及其邻近区域的大胞体细胞可能具有相同的功能,且该核可能形成离顶盖通路和副视系统相联系的交通要道。  相似文献   

20.
Horseradish peroxidase (HRP) was injected into either a single maxillary or a single mandibular primary (deciduous) cuspid tooth of 8- to 10-week-old kittens. The large apex of the primary cuspid allowed for some leakage of the HRP from the pulpal chamber to the periodontal ligament (PDL). Thus, the injection procedure resulted in the application of HRP to the PDL as well as to the pulpal tissues. The transganglionic transport of HRP resulted in discrete terminal fields within the spinal trigeminal nucleus (STN) and the main sensory nucleus (MSN). These projections were clearly somatotopically organized within the STN, but less so within MSN. Within pars oralis (PO) and pars interpolaris (PI), mandibular cuspid dental structures (MdCDS) were represented in a dorsal position relative to the maxillary cuspid dental structures (MxCDS), whereas within pars caudalis (PC) and the adjacent reticular formation the somatotopic representation was not dorsoventral, but rather mediolateral, with the MdCDS represented more medially than the MxCDS. Areas of overlap between MxCDS and MdCDS were found within MSN and to a lesser degree within the superficial laminae of PC. In addition, the fiber pathway leading to labeled somata in the mesencephalic trigeminal (Mes V) nucleus was clearly identified. The majority of the fibers traced to the Mes V nucleus exited the spinal trigeminal tract at the level of the transition from PO to the MSN and traversed the nuclear region in a position dorsal to and separate from the trigeminal motor tract. As in STN, fibers within the caudal Mes V tract appeared to be somatotopically organized, with the fibers from the MdCDS generally more dorsal than the ones from the MxCDS. Labeled fibers, some with terminal arbors, were also identified in close association with the trigeminal motor tract. The findings show a complex pattern of central representation in the immature feline central nervous system for deciduous dental structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号