首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To date there has been a focus on the application of sterically stabilized liposomes, composed of saturated diacylphospholipid, polyethylene glycol (PEG) conjugated lipids (5-10 mole%) and cholesterol (CH) (>30 mole%), for the systemic delivery of drugs. However, we are now exploring the utility of liposome formulations composed of diacylphospholipid conjugated PEG mixtures prepared in the absence of added cholesterol, with the primary objective of developing formulations that retain encapsulated drug better than comparable formulations prepared with cholesterol. In this report the stability of cholesterol-free distearoylphosphatidylcholine (DSPC):distearoylphosphatidylethanolamine (DSPE)-PEG(2000) (95:5 mol/mol) liposomes was characterized in comparison to cholesterol-containing formulations DSPC:CH (55:45 mol/mol) and DSPC:CH:DSPE-PEG(2000) (50:45:5 mol/mol/mol), in vivo. Circulation longevity of these formulations was determined in consideration of variables that included varying phospholipid acyl chain length, PEG content and molecular weight. The application of cholesterol-free liposomes as carriers for the hydrophobic anthracycline antibiotic, idarubicin (IDA), was assessed. IDA was encapsulated using a transmembrane pH gradient driven process. To determine stability in vivo, pharmacokinetic studies were performed using 'empty' and drug-loaded [(3)H]cholesteryl hexadecyl ether radiolabeled liposomes administered intravenously to Balb/c mice. Inclusion of 5 mole% of DSPE-PEG(2000) or 45 mole% cholesterol to DSPC liposomes increased the mean plasma area under the curve (AUC(0-24h)) 19-fold and 10-fold, respectively. Cryo-transmission electron micrographs of IDA loaded liposomes indicated that the drug formed a precipitate within liposomes. The mean AUC(0-4h) for free IDA was 0.030 micromole h/ml as compared to 1.38 micromole h/ml determined for the DSPC:DSPE-PEG(2000) formulation, a 45-fold increase, demonstrating that IDA was retained better in cholesterol-free compared to cholesterol-containing liposomes.  相似文献   

2.
To date there has been a focus on the application of sterically stabilized liposomes, composed of saturated diacylphospholipid, polyethylene glycol (PEG) conjugated lipids (5-10 mole%) and cholesterol (CH) (>30 mole%), for the systemic delivery of drugs. However, we are now exploring the utility of liposome formulations composed of diacylphospholipid conjugated PEG mixtures prepared in the absence of added cholesterol, with the primary objective of developing formulations that retain encapsulated drug better than comparable formulations prepared with cholesterol. In this report the stability of cholesterol-free distearoylphosphatidylcholine (DSPC):distearoylphosphatidylethanolamine (DSPE)-PEG2000 (95:5 mol/mol) liposomes was characterized in comparison to cholesterol-containing formulations DSPC:CH (55:45 mol/mol) and DSPC:CH:DSPE-PEG2000 (50:45:5 mol/mol/mol), in vivo. Circulation longevity of these formulations was determined in consideration of variables that included varying phospholipid acyl chain length, PEG content and molecular weight. The application of cholesterol-free liposomes as carriers for the hydrophobic anthracycline antibiotic, idarubicin (IDA), was assessed. IDA was encapsulated using a transmembrane pH gradient driven process. To determine stability in vivo, pharmacokinetic studies were performed using ‘empty’ and drug-loaded [3H]cholesteryl hexadecyl ether radiolabeled liposomes administered intravenously to Balb/c mice. Inclusion of 5 mole% of DSPE-PEG2000 or 45 mole% cholesterol to DSPC liposomes increased the mean plasma area under the curve (AUC0-24h) 19-fold and 10-fold, respectively. Cryo-transmission electron micrographs of IDA loaded liposomes indicated that the drug formed a precipitate within liposomes. The mean AUC0-4h for free IDA was 0.030 μmole h/ml as compared to 1.38 μmole h/ml determined for the DSPC:DSPE-PEG2000 formulation, a 45-fold increase, demonstrating that IDA was retained better in cholesterol-free compared to cholesterol-containing liposomes.  相似文献   

3.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.  相似文献   

4.
When used as nanosized carriers, liposomes enable targeted delivery and decrease systemic toxicity of antitumor agents significantly. However, slow unloading of liposomes inside cells diminishes the treatment efficiency. The problem could be overcome by the adoption of lipophilic prodrugs tailored for incorporation into lipid bilayer of liposomes. We prepared liposomes of egg yolk phosphatidylcholine and yeast phosphatidylinositol bearing a diglyceride conjugate of an antitumor antibiotic doxorubicin (a lipophilic prodrug, DOX-DG) in the membrane to study how these formulations interact with tumor cells. We also prepared liposomes of rigid bilayer-forming lipids, such as a mixture of dipalmitoylphosphatidylcholine and cholesterol, bearing DOX in the inner water volume, both pegylated (with polyethylene glycol (PEG) chains exposed to water phase) and non-pegylated. Efficiency of binding of free and liposomal doxorubicin with tumor cells was evaluated in vitro using spectrofluorimetry of cell extracts and flow cytometry. Intracellular traffic of the formulations was investigated by confocal microscopy; co-localization of DOX fluorescence with organelle trackers was estimated. All liposomal formulations of DOX were shown to distribute to organelles retarding its transport to nucleus. Intracellular distribution of liposomal DOX depended on liposome structure and pegylation. We conclude that the most probable mechanism of the lipophilic prodrug penetration into a cell is liposome-mediated endosomal pathway.  相似文献   

5.
Abstract

Incorporation of polymers, such as polyethylene glycol (PEG-lipid derivatives, or glycolipids, such as monosialoganglioside GM1; into liposomes results in sterically stabilized liposomes which have several advantages over liposome formulations traditionally used in the past, including reduced recognition and uptake by macrophages, extended circulation half-lives, dose-independent pharmacokinetics, and increased uptake in vivo by solid tumours. PEG-lipid derivatives such as PEG-distearoylphosphatidylethanolamine (PEG-DSPE) are particularily useful because of their ease of preparation and relative lack of expense. Optimum molecular weight of the PEG headgroup is approximately 2000 daltons and optimum concentration in the bilayer is 5 to 7 mol% of phospholipids. Pegylated liposomes have the additional advantage of allowing.  相似文献   

6.
Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles ("first-generation liposomes") to "second-generation liposomes", in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology.  相似文献   

7.
The antitumor platinum(II) compound, [Pt(dach)(Glu)] (dach=trans(+/-)-1,2-diaminocyclohexane, Glu=glutamate) was formulated with a stealth liposome to improve its biological activity. Liposomes were composed of PC/PEG2000-PE/CH (PC=1,2-diacyl-glycero-3-phosphocholine; PEG2000-PE=poly(ethylene glycol)2000-1,2-diacyl-glycero-3-phosphoethanolamine; CH=cholesterol) involving different acyl moieties of phospholipids such as DO (dioleoyl), DM (dimyristoyl) or DS (distearoyl) group. Among the different acyl groups in the stealth liposomes, the DM formulation was optimal for the preparation of the liposomal [Pt(dach)(Glu)] at the mole ratio of DMPC/PEG2000-DMPE/CH=50/5/45 and at the weight ratio of drug/lipid=1/20, which is represented as L-[Pt(dach)(Glu)]. In vitro cytotoxicity was examined in sensitive A2780 and ME180 and their cisplatin-resistant A2780/PDD and ME180/PDD cancer cells. L-[Pt(dach)(Glu)] was 2 approximately 3 times more cytotoxic than the free complex [Pt(dach)(Glu)] and cisplatin in sensitive cells, and 4 approximately 8 times more cytotoxic in resistant cells. Thus, the resistance index of L-[Pt(dach)(Glu)] was 1.3 approximately 2 while those of the free complex and cisplatin were 5 approximately 6, which indicates that L-[Pt(dach)(Glu)] overcome the cisplatin resistance in both resistant cells. In vivo antitumor activity was assayed against the L1210/S leukemia. The optimal activities (% T/C) of the free complex and L-[Pt(dach)(Glu)] were >459/20 and >442/200 mg/kg, respectively. Considering the amount of the platinum complex in L-[Pt(dach)(Glu)], the liposomal [Pt(dach)(Glu)] displayed 2-fold higher drug potency than the free complex. The biodistribution experiment using LE52 tumor-bearing mouse showed excellent lung targeting property of L-[Pt(dach)(Glu)].  相似文献   

8.
Unmodified and polyethylene glycol (PEG) modified neutral and negatively charged liposomes were prepared by freeze-thaw and extrusion followed by chromatographic purification. The effects of PEG molecular weight (PEG 550, 2000, 5000), PEG loading (0-15 mol%), and liposome surface charge on fibrinogen adsorption were quantified using radiolabeling techniques. All adsorption isotherms increased monotonically over the concentration range 0-3 mg/ml and adsorption levels were low. Negatively charged liposomes adsorbed significantly more fibrinogen than neutral liposomes. PEG modification had no effect on fibrinogen adsorption to neutral liposomes. An inverse relationship was found between PEG loading of negatively charged liposomes and fibrinogen adsorption. PEGs of all three molecular weights at a loading of 5 mol% reduced fibrinogen adsorption to negatively charged liposomes. Protein adsorption from diluted plasma (10% normal strength) to four different liposome types (neutral, PEG-neutral, negatively charged, and PEG-negatively charged) was investigated using gel electrophoresis and immunoblotting. The profiles of adsorbed proteins were similar on all four liposome types, but distinctly different from the profile of plasma itself, indicating a partitioning effect of the lipid surfaces. alpha2-macroglobulin and fibronectin were significantly enriched on the liposomes whereas albumin, transferrin, and fibrinogen were depleted compared to plasma. Apolipoprotein AI was a major component of the adsorbed protein layers. The blot of complement protein C3 adsorbed on the liposomes suggested that the complement system was activated.  相似文献   

9.
The topical application of all-trans retinoic acid (ATRA) is an effective treatment for several skin disorders, including photo-aging. Unfortunately, ATRA is susceptible to light, heat, and oxidizing agents. Thus, this study aimed to investigate the ability of polymeric micelles prepared from polyethylene glycol conjugated phosphatidylethanolamine (PEG-PE) to stabilize ATRA under various storage conditions. ATRA entrapped in polymeric micelles with various PEG and PE structures was prepared. The critical micelle concentrations were 97–243 μM, depending on the structures of the PEG and PE molecules. All of the micelles had particle diameters of 6–20 nm and neutral charges. The highest entrapment efficiency (82.7%) of the tested micelles was exhibited by ATRA in PEG with a molecular weight of 750 Da conjugated to dipalmitoyl phosphatidylethanolamine (PEG750-DPPE) micelles. The PEG750-DPPE micelle could significantly retard ATRA oxidation compared to ATRA in 75% methanol/HBS solution. Up to 87% of ATRA remained in the PEG750-DPPE micelle solution after storage in ambient air for 28 days. This result suggests that PEG750-DPPE micelle can improve ATRA stability. Therefore, ATRA in PEG750-DPPE micelle is an interesting alternative structure for the development of cosmeceutical formulations.  相似文献   

10.
This article evaluates the influence of five parameters on liposome partitioning in aqueous two-phase systems (ATPSs), composed of poly(ethyleneglycol) (PEG)/dextran (Dx), using the factorial experimental design together with a multiple regression. Mathematical models to quantify the influence of these parameters, individually and/or jointly, on liposome partitioning in ATPS were developed. The models were statistically tested and verified by experimentation. This approach was then used to define the conditions for the preferential accumulation of liposomes in the top PEG-rich phase. The models predicted a significant effect of liposome surface charge, PEG molecular weight, phase-forming polymer concentration, and phosphate ion concentration on the partition behavior of liposomes. For negatively charged liposomes, it was found that the smaller the molecular weight of PEG and polymer concentration and the larger the phosphate ion concentration, the greater the partition coefficient of the liposomes. No significant effect of pH, at the range of 6-8, on liposome partitioning was noted. This approach has led to the development of an optimal two-phase system where 90% of negatively charged liposomes accumulated in the PEG phase. In addition to the general scientific value of this research, it has a technological importance as ATPSs may be useful for removing the unentrapped drug from liposomes during their preparation for pharmaceutical applications. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

12.
The ability of pegylated liposomes (sterically stabilized liposomes-SSL) to localize in solid tumors via the enhanced permeability and retention (EPR) effect, partly depends on their long circulating properties which can be achieved by grafting polyethylene glycol (PEG) to the liposomes’ surface. Alkannin and shikonin (A/S) are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant, and recently established antitumor activity. The purpose of this work was to prepare and characterize shikonin-loaded pegylated liposomes as a new drug carrier for shikonin, as a continuation of authors’ previous work on conventional shikonin-loaded liposomal formulations. Three new pegylated liposomal formulations of shikonin (DSPC-PEG2000, EPC-PEG2000, and DPPC-PEG2000) were prepared and characterized in terms of physicochemical characteristics, pharmacokinetics, and stability (at 4?°C, for 28?d) and compared with the corresponding conventional ones. Particle size distribution, ζ-potential, entrapment efficiency, and release profile of the entrapped drug were measured. Results indicated the successful incorporation of shikonin into liposomes alongside with their good physicochemical characteristics, high entrapment efficiency, satisfactory in vitro release profile, and good physical stability. The results are considered promising and could be used as a road map for designing further in vivo experiments.  相似文献   

13.
Liposomes composed of dipalmitoylphosphatidylcholine (DPPC), cholesterol and a neoglycolipid, mannopentaose-conjugated dipalmitoylphosphatidylethanolamine (Man5-DPPE), have been shown to have a strong adjuvant effect in inducing the antigen-specific cellular immunity. In this study, a rapid and simple analytical method using a HPLC system with an evaporative light scattering detector was developed for simultaneous quantification of the liposome components Man5-DPPE, cholesterol and DPPC. The chromatographic separation of these components was performed using a trimethylsilane column with an isocratic mobile phase of chloroform–methanol–water (1:33:6, v/v) after disrupting the liposomes with chloroform–methanol–water (10:10:3, v/v). This HPLC method provided sufficient reproducibility and linearity of calibration curves for the quantification of the liposome constituents. In addition, this method can be used for the quantification of various neoglycolipids with different carbohydrate structures.  相似文献   

14.
The antimitotic agent combretastatin A-4 (CA-4) has been recently proposed as an antivascular agent for anticancer therapy. In order to reduce systemic toxicity by means of administration in liposome formulations, new lipophilic prodrugs, oleic derivatives of CA-4 and its 4-arylcoumarin analogue (CA4-Ole and ArC-Ole, respectively), have been synthesized in this study. Liposomes with mean diameter of 100 nm prepared on the basis of egg phosphatidylcholine and baker’s yeast phosphatidylinositol quantitatively included up to 15 mol% of CA4-Ole, or 7 mol% of ArC-Ole. To achieve targeting to neovascular endothelium prodrug bearing liposomes decorated with the tetrasaccharide selectin ligand Sialyl Lewis X (SiaLeX) have been also prepared. The antitumor activity was studied in vivo using the model of slow-growing mouse breast cancer. Under the dose used (22 mg/kg) and the administration protocol (four injections, one per a week, starting from the appearance of palpable tumors) cytostatic CA-4 did not reveal any anticancer effect; moreover, it even stimulated tumor growth. The liposome formulations of CA4-Ole did not demonstrate such stimulation. However, to achieve a pronounced antitumor effect, the number of injections of liposomes should be apparently increased. The cytotoxic activity of a novel antimitotic agent ArC was one order of magnitude lower in the human breast carcinoma cell culture in vitro. Nevertheless, in vivo in the mouse model of breast cancer the antitumor effect of this compound corresponded to the double equivalent dose of CA-4. The results demonstrate perspectives of SiaLeX-liposomes loaded with ArC-Ole: the preparation partially inhibited tumor growth already after the second injection. Thus, subsequent optimization of doses and regimens of administration both for ArC and liposomal ArC-Ole formulations are needed.  相似文献   

15.
Preferential localization of liposomes at sites of infection or inflammation has been demonstrated in a variety of experimental models. Most studies report enhanced localization at the target site of poly(ethyelene) glycol (PEG)-coated liposomes as compared to conventional non-coated liposomes. It is generally accepted that the prolonged circulation time of PEG-coated liposomes increases target site exposure, which results in increased target localization. A quantitative relationship between circulation kinetics and localization at the pathological site has not been defined as yet. Besides, an effect of the PEG coating itself has been suggested, as theoretically the PEG coating may facilitate liposome extravasation. In the present study, in a rat model of an acute unilateral Klebsiella pneumoniae pneumonia, circulation kinetics of PEG-coated liposomes were manipulated by incorporation of different amounts of phosphatidylserine (PS) and variation of lipid dose, additionally allowing evaluation of the saturability of the localization process. In addition, this paper addresses the effect of the PEG coating, by comparing the circulation kinetics and target localization of long-circulating 'PEG-free' and PEG-coated liposomes. It is shown that the degree of liposome localization at the target site is positively linearly related to the area under the blood concentration time curve (AUC) of the liposome formulations, irrespective of PEG coating. This finding is discussed in relation to the equation of Kedem and Katchalsky, which describes protein influx into sites of infection or inflammation.  相似文献   

16.
In order to explore the use of exchangeable poly(ethylene glycol) (PEG)-modified diacylphosphatidylethanolamines (PE) to temporarily shield binding ligands attached to the surface of liposomes, a model reaction based on inhibition and subsequent recovery of biotinylated liposome binding to streptavidin immobilized on superparamagnetic iron oxide particles (SA magnetic particles) was developed. PEG-lipid incorporation into biotinylated liposomes decreased liposome binding to SA magnetic particles in a non-linear fashion, where as little as 0.1 mol% PEG-PE resulted in a 20% decrease in binding. Using an assay based on inhibition of binding, PEG(2000)-PE transfer from donor liposomes to biotinylated acceptor liposomes could be measured. The influence of temperature and acyl chain composition on the transfer of PEG-diacyl PEs from donor liposomes to acceptor liposomes, consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine, cholesterol and N-((6-biotinoyl)amino)hexanoyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (54.9:45:0.1 mole ratio), was measured. Donor liposomes were prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (50 mol%), cholesterol (45 mol%) and 5 mol% of either PEG-derivatized 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE-PEG(2000)), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-PEG(2000)), or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG(2000)). Transfer of DSPE-PEG(2000) to the donor liposomes was not detected under the conditions employed. In contrast, DMPE-PEG(2000) was transferred efficiently even at 4 degrees C. Using an acceptor to donor liposome ratio of 1:4, the time required for DMPE-PEG(2000) to become evenly distributed between the two liposome populations (T(EQ)) at 4 degrees C and 37 degrees C was approx. 2 and <0.5 h, respectively. An increase in acyl chain length from C14:0 to C16:0 of the PEG-lipid resulted in a significant reduction in the rate of transfer as measured by this assay. The transfer of PEG-lipid out of biotinylated liposomes was also studied in mice following intravenous administration. The relative rates of transfer for the various PEG-lipids were found to be comparable under in vivo and in vitro conditions. These results suggest that it is possible to design targeted liposomes with the targeting ligand protected while in the circulation through the use of PEG-lipids that are selected on the basis of exchange characteristics which result in exposure of the shielded ligand following localization within a target tissue.  相似文献   

17.
Abstract

Phospholipids covalently attached to polyethylene glycol (PEG-PE) are routinely used for the preparation of long-circulating liposomes. The common preparation procedure for long-circulating liposomes involves use of organic solvent. Although there is a plethora of studies describing the interaction of PEG-PE with bilayers, little is known about the effects of PEG homopolymers and single chain amphiphilic PEG on liposome structure. In the present investigation the interaction of PEG homopolymer and amphiphilic PEG-palmityl conjugate with large multilamellar liposomes composed of 1,2-dipalmitoyl-sn-glycero-phosphocholine was investigated utilizing differential scanning calorimetry. Vesicle and aggregate sizes were determined by dynamic light scattering. DSC thermograms revealed interaction of PEG homopolymer with DPPC when the two are premixed in organic solvent. The data suggest that PEG interacts with the phospholipid acyl chains deep in the bilayer. Several questions are raised regarding the suitability of the current procedure for preparation of long-circulating liposomes which utilizes organic solvent. Incorporation of only 2 mol% 5 kDa PEG-palmityl conjugate completely solubilized DPPC liposomes. Packing geometry of the lipid anchor, irrespective of the polymer molecular weight, is suggested to be the primary factor for successful grafting of hydrophilic polymers on liposomes. Pure PEG-palmityl formed self-assembled organized structures of potential use in the delivery of poorly soluble drugs.  相似文献   

18.
Phospholipids with covalently attached poly(ethylene glycol) (PEG lipids) are commonly used for the preparation of long circulating liposomes. Although it is well known that lipid/PEG-lipid mixed micelles may form above a certain critical concentration of PEG-lipid, little is known about the effects of PEG-lipids on liposome structure and leakage at submicellar concentrations. In this study we have used cryogenic transmission electron microscopy to investigate the effect of PEG(2000)-PE on aggregate structure in preparations of liposomes with different membrane compositions. The results reveal a number of important aggregate structures not documented before. The micrographs show that enclosure of PEG-PE induces the formation of open bilayer discs at concentrations well below those where mixed micelles begin to form. The maximum concentration of PEG-lipid that may be incorporated without alteration of the liposome structure depends on the phospholipid chain length, whereas phospholipid saturation or the presence of cholesterol has little or no effect. The presence of cholesterol does, however, affect the shape of the mixed micelles formed at high concentrations of PEG-lipid. Threadlike micelles form in the absence of cholesterol but adapt a globular shape when cholesterol is present.  相似文献   

19.
The effects of phospholipid composition on the pharmacokinetics (PK) and biodistribution of epirubicin (EPI) liposomes, as well as the in vitro macrophage uptake of various liposome formulations, were investigated. Three liposome formulations were investigated: HSPC:Chol (L-EPI; 5:4 molar ratio), HSPC:Chol:DSPG (D-EPI; 5:4:1 molar ratio), and HSPC:Chol:DSPG:DSPE-mPEG(2000) (S-EPI; 5:4:1:0.3 molar ratio). Small unilamellar liposomes were prepared by the modified thin-film hydration method with extrusion through polycarbonate filters, and EPI was remote loaded into liposomes by the transmembrane ammonium sulfate gradient method. Macrophages were used to evaluate in vitro the cellular uptake of EPI-loaded liposomes. The following decreasing order of uptake amount was observed: L-EPI>D-EPI>S-EPI. D-EPI showed a relatively low level of uptake, probably because of the steric hindrance provided by the glycerol head group on DSPG, protecting it from the direct recognization by cell-membrane receptors. With the presence of serum, uptake values for all liposome formulations were increased for the activation of the complement system. In the PK study, S-EPI showed significantly prolonged circulating time and reduced clearance. The following increasing order of area under the concentration versus time curve was observed among the various liposome formulations: L-EPI相似文献   

20.
A novel liposome preparation method is described as freeze-drying of water-in-oil emulsions containing sucrose in the aqueous phase (W) and phospholipids and poly(ethylene glycol)1500 (PEG) in the oil phase (O). The water-in-oil emulsions were prepared by sonication and then lyophilized to obtain dry products. Upon rehydration, the dry products formed liposomes with a size smaller than 200 nm and an encapsulation efficiency (EE) higher than 60% for model drugs. The presence of lyoprotectant and PEG was found to be a prerequisite for the formation of liposomes with desirable properties, such as a small particle size and high EE. The lyophilates were stable and could be rehydrated to form liposomes without any change in size or EE even after a storage period of 6 months. Also, the lipophilic drug-containing FWE liposomes were stable and could be stored for at least 6 months although the liposomes containing hydrophilic drugs showed significant leakage. Based on the vesicle size and EEs of the model drugs, as well as the scanning electron micrograph (SEM) and small angle X-ray scattering (SAXS) pattern of the lyophilates, a possible mechanism for the liposome formation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号