首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Cationic liposomes have been studied as a potential carrier for delivering genes to cells for the purpose of gene therapy. This report summarizes our efforts to characterize the in vivo expression of transgene delivered by cationic liposomes via intravenous administrtion. Using a CMV driven gene expression system containing cDNA of luciferase or green fluorescence protein gene as a reporter and two commonly used cationic lipids, 2, 3-dioleoyloxypropyl-1-trimethyl ammonium chloride (DOTMA) and 2, 3-dioleoyloxyl-1-trimethylammonium propanyl chloride (DOTAP), we demonstrate that a significant level of gene expression can be obtained in different organs including the lung, heart, spleen, liver and kidneys following intravenous administration in the mouse. Our finding show that the transfection efficiency of cationic liposomes is determined by the structure of the cationic lipids, the lipid composition of liposomes and cationic lipid to DNA ratio. Furthermore, gene expression was short in duration, peaked between 4-24 hours post injection, and dropped to less than 1% of the peak level within a 4 day period. Experiments with repeated injections revealed that cells initially transfected by the first transfection were not fully responsive to the subsequent second transfection for approximately 14 days.  相似文献   

2.
A novel cholesterol-based cationic lipid containing a tri-2- hydroxyethylamine head group and ether linker (Chol- THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.  相似文献   

3.
Abstract

A novel lipid/polycation/DNA (LPD) formulation has been developed for in vivo gene transfer. It involves the condensation of plasmid DNA with protamine sulfate, a cationic polypeptide, followed by the addition of DOTAP cationic liposomes. Compared with DOTAP/DNA complex, LPD offers greater protection of plasmid DNA against enzymatic digestion and gives consistently higher gene expression in mice via tail vein injection. The in vivo efficiency of LPD was dependent upon charge ratio and was also affected by the lipid used. Increasing the amount of DNA delivered induced an increase in gene expression. The optimal dose was approximately 50 μg per mouse, at which concentration approximately 10 ng luciferase protein per mg extracted tissue protein could be detected in the lung. Gene expression in the lung was detected as early as 1 h after injection, peaked at 6 h, and declined thereafter. Using LacZ as a reporter gene, it was shown that endothelial cells were the primary locus of transgene expression in both lung and spleen. No sign of inflammation in these organs was noticed. Since protamine sulfate has been proven to be non-toxic and only weakly immunogenic in humans, this novel vector may be useful for the clinical use of gene therapy.  相似文献   

4.
BACKGROUND: Lipid-based vectors have been widely applied to in vivo and in vitro gene delivery. Disaccharides can effectively stabilize lipid membranes. This study examined whether disaccharides could enhance the transgene expression mediated by lipid-based vectors. METHODS: Different disaccharides were incorporated into the vectors prepared with DOTAP/protamine/DNA (LPD) or with DNA/cationic liposomes containing DOTAP, DOTAP/Chol, DOTAP/DOPE, or DC-Chol/DOPE. The levels of transgene expression and internalized plasmid of CHO cells were represented by the percentages of GFP-positive cells and the fluorescence intensity of ethidium-monoazide covalently labeled plasmid, respectively. The vectors containing either cellobiose or trehalose were also intravenously injected into mouse tail vein to investigate the potentials of in vivo applications. RESULTS: For enhancing the transgene expression, cellobiose was found to be effective for all the vectors whereas maltose decreased the effectiveness of DOTAP/Chol liposomes and LPD. For the internalization of plasmid, most disaccharides were able to increase the cellular delivery of DOTAP, DOTAP/Chol, and DOTAP/DOPE liposomes, but caused decreases in the cellular entry of DC-Chol/DOPE liposomes. An approximately linear correlation between the internalized plasmid and the transgene expression was observed for all the treatments in this study. When the vectors were administered to mouse by intravenous injection, 10-fold and 3-fold increases in the luciferase expression of lung were observed for DOTAP liposomes containing 330 mM cellobiose and trehalose, respectively. CONCLUSIONS: This study showed that using trehalose and cellobiose with a lipid-based delivery system provides a straightforward approach to effectively enhance both in vitro and in vivo transgene expression.  相似文献   

5.
Transfection efficiency of lipoplex-mediated gene delivery is multifactorial. However, the mode of interaction between the factors which affect transfection is not fully understood. To help fill this deficiency we evaluated the effect of the interplay between several variables that affect transfection efficiency in cell cultures. For this, we applied the Analysis of Variance Model with Fixed Effects and Repeated Measures to assess the data. The variables studied include: two different genes, Luc, and human growth hormone (hGH), in three different plasmids (two of which contain the luciferase (Luc) gene, but different promoter-enhancer regions (CMV and H19) and one plasmid coding hGH with a S16 promoter); three topoisoforms of pDNA (supercoiled (SC), open circular (OC), and closed circular (CC)); three cationic lipid compositions, all based on the monocationic lipid DOTAP (100% DOTAP, DOTAP/DOPE 1 : 1, and DOTAP/cholesterol 1 : 1, all ratios are mole ratios); two DNA-/L+ charge ratios (0.2 and 0.5); and two cell lines (NIH 3T3 and MBT-2). Our statistical analysis confirmed that the cell type, the gene used for transfection, the promoter type, the type of helper lipid, and DNA-/DOTAP+ charge ratio, all affect transfection efficiency in a statistically significant manner. The most efficient lipoplex formulation in both cell lines was that based on DOTAP (without helper lipid), having CC plasmid DNA. We suggest that for obtaining the most transfection-efficient lipoplex one should select the best topoisoform of pDNA for each particular cell type, and complex it with cationic liposomes having optimal lipid composition.  相似文献   

6.
In order to develop improved synthetic gene transfer vectors, we have synthesized bifunctional peptides composed of a DNA binding peptide (P2) and ligand peptides selected by the phage display technique on tracheal epithelial cells. We have evaluated the capacity of these peptides to enhance the gene transfer efficiency of the cationic lipid DOTAP to the mouse lung. To optimize the in vivo transfection efficiency, we first compared the efficiency of DOTAP to transfect the lung by either intravenous injection or aerosolization. We then tested DNA/Peptide/DOTAP complexes formed at different Peptide/DNA and DOTAP/DNA charge ratios. Under optimal conditions, precompaction of DNA by peptide P2 gave a higher expression in the mouse lung using the luciferase reporter gene than DOTAP/DNA complexes. A further increase of transfection efficiency was obtained with the bifunctional peptide P2-9. Experiments performed with the GFP reporter gene showed expression in the alveolar parenchyme.  相似文献   

7.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA-) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

8.
Cationic lipid emulsion systems consisting of 1,2-dioleoyl-sn-glycero-3-trimethyl-ammonium-propane (DOTAP) and plasmid DNA with various counterions in the lipid headgroups were prepared. The transfection activity of the cationic lipid emulsion systems was then investigatedin vitro andin vivo. The complex formation of plasmid DNA and lipid emulsion was affected by the counterions through charged headgroup repulsion and also by the salt concentration in the media. As such, the transfection activity of the DOTAP emulsion system can be controlled by changing the counterions.  相似文献   

9.
In this paper, two novel carbamate-linked quaternary ammonium lipids (MU18: a lipid with a mono-ammonium head; GU18: a lipid with a Gemini-ammonium head) containing unsaturated hydrophobic chains were designed and synthesized. The chemical structures of the synthetic lipids were characterized by infrared spectrum, ESI-MS, 1H NMR, 13C NMR, and HPLC. For investigating the effect of unsaturation on gene delivery, the previous reported saturated cationic liposomes (MS18 and GS18) were used as comparison. Cationic liposomes were prepared by using these cationic lipids and neutral lipid DOPE at the molar ratio of 1:1. Particle sizes and zeta potentials of the cationic liposomes were studied to show that they were suitable for gene transfection. The binding abilities of the cationic liposomes were investigated by gel electrophoresis at various N/P ratios from 0.5/1 to 8/1. The results indicated that the binding ability of GU18 was much better than MU18 and the saturated cationic liposomes (MS18 and GS18). DNA transfection of these liposomes comparable to commercially available reagent (DOTAP) was achieved in vitro against Hela, HepG-2 and NCI-H460 cell lines. GU18 showed higher transfection at the N/P ratio of 3/1 than other cationic liposomes and the positive control, DOTAP. All of the liposomes presented a relatively low cytotoxicity, which was measured by MTT. Therefore, the synthetic lipids bearing unsaturated hydrophobic chains and Gemini-head could be promising candidates for gene delivery.  相似文献   

10.
Transgene expression in lymphoid cells may be useful for modulating immune responses in, and gene therapy of, cancer and AIDS. Although cationic liposome-DNA complexes (lipoplexes) present advantages over viral vectors, they have low transfection efficiency, unfavorable features for intravenous administration, and lack of target cell specificity. The use of a targeting ligand (transferrin), or an endosome-disrupting peptide, in ternary complexes with liposomes and a luciferase plasmid, significantly promoted transgene expression in several T- and B-lymphocytic cell lines. The highest levels of luciferase activity were obtained at a lipid/DNA (±) charge ratio of 1/1, where the ternary complexes were net negatively charged. The use of such negatively charged ternary complexes may alleviate some of the drawbacks of highly positively charged plain lipoplexes for gene delivery.  相似文献   

11.
Experimental results have suggested that transgene expression can be saturated when large amounts of plasmid vectors are delivered into cells. To investigate this saturation kinetic behavior, cells were transfected with monitoring and competing plasmids using cationic liposomes. Even although an identical amount of a monitoring plasmid expressing firefly luciferase (FL) was used for transfection, transgene expression from the plasmid was greatly affected by the level of transgene expression from competing plasmids expressing renilla luciferase (RL). Similar results were obtained by exchanging the monitoring and competing plasmids. The competing plasmid‐dependent reduction in transgene expression from the monitoring plasmid was also observed in mouse liver after hydrodynamic injection of plasmids. On the other hand, the mRNA and protein expression level of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), an endogenous gene, in the liver hardly changed even when transgene expression process is saturated. The expression of FL from a monitoring plasmid was significantly restored by siRNA‐mediated degradation of RL mRNA that was expressed from a competing plasmid. These results suggest that the efficiency of protein synthesis from plasmid vectors is reduced when a large amount of mRNA is transcribed with no significant changes in endogenous gene expression. Biotechnol. Bioeng. 2011;108: 2380–2389. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

13.
The objectives of this study were to test the influence of different parameters on the in vivo cationic lipid mediated gene transfer in lung after intravenous administration. Luciferase activity was evaluated in lung tissue 24 hours after intravenous administration of different types of lipoplexes. These included lipoplexes prepared using cationic phosphonolipids or DOTAP and various amounts of plasmid DNA. Using two different plasmids we tested the influence of plasmid size on transfection efficiency in vivo. In a last series of experiments, lipoplexes were prepared using different excipients (water, NaCl or 5% glucose solution) and three injection volumes were tested. We demonstrate that chemical structure modifications such as cation substitution and increment of the aliphatic chain length significantly improve transfection efficiency. High luciferase levels are obtained by increasing lipid to DNA charge ratio and plasmid DNA dose and decreasing plasmid size. Lipoplexes prepared in physiological NaCl solution and injected using a volume of 800μl are significantly the most effective.

Cationic lipid mediated gene transfer in lung tissue after intravenous administration is influenced by factors including cationic lipid chemical structure, lipid to DNA ratio and plasmid dose. Nevertheless, plasmid size, injection volume and the excipient, used for the lipoplexes preparation, are also important factors and must be considered for an optimization of in vivo gene delivery using intravenous administration.  相似文献   

14.
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) > pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE > pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.  相似文献   

15.
16.
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.  相似文献   

17.
The solid phase synthesis of a library of aminoglycerol–diamine conjugate-based transfection agents having urea linkage between diverse length of diamines and various lengths of hydrophobic tails is described. These compounds were characterized and structure–activity relationships were determined for DNA binding and transfection ability when formulated as cationic liposomes. Cationic lipids with short spacer length and short hydrophobic tails bound to DNA and delivered DNA into HEK293 cells more efficient than those with longer ones. Transfection efficiency of some of the cationic liposomes was superior to that of the commercial transfection agents, EffecteneTM, DOTAP and DC-Chol. The lipids 6Ab and 6Bb did not require the helper lipid DOPE to produce high-efficiency transfection of human cells while displaying minimal cytotoxicity. This suggests that these newly described aminoglycerol-based lipids should be very promising in liposome-mediated gene delivery and illustrate the potential of solid phase synthesis method for non-viral vector discovery.  相似文献   

18.
19.
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.  相似文献   

20.
A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer.   总被引:3,自引:0,他引:3  
The efficient release of nonviral gene carriers from endosomes is an important step for the successful delivery of DNA into the cell nucleus. A synthetic pH-sensitive anionic polymer, poly(propylacrylic acid) (PPAA), was designed to aid in endosomal escape of nonviral vectors and improve the transfection efficiencies with these vectors. Transfection of NIH3T3 fibroblasts with ternary physical mixtures of the cationic lipid DOTAP, pCMVbeta plasmid DNA, and PPAA showed marked enhancement of both gene expression levels and fraction of cells transfected compared to binary control mixtures of DOTAP and DNA. PPAA also significantly improved the serum-stability of DOTAP/DNA vectors. The DOTAP/DNA/PPAA vectors maintained high levels of transfection in media containing up to 50% serum. The striking enhancement of transfection efficiency with cationic lipid/DNA/PPAA mixtures, along with the enhanced serum-stability, suggests that PPAA may provide significant improvements for the in vivo intracellular delivery of drugs such as DNA, oligonucleotides, proteins, and peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号