首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Analogs of adenosine triphosphate (ATP) with substitutions at the 8-position have been shown to be cytotoxic to multiple myeloma, one of the most prevalent and serious blood cancers. However, these drugs do not readily cross biological membranes and are very sensitive to phosphatases present in body fluids. To circumvent these disadvantages, 8-substituted ATPs were encapsulated into cationic phospholiposomes generated from cationic phosphatidylcholines (EDOPC; 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, and EDPPC, the corresponding dipalmitoyl homolog), compounds with low toxicity that readily form liposomes. Vortexing was an efficient encapsulation procedure, more so than freeze-thawing. At the lipid:drug ratio of 5:1 (mol/mol), 20% of 8-Br-ATP was encapsulated within EDOPC liposomes. Efficient encapsulation and retention of 8-NH?-ATP required the inclusion of cholesterol. Liposomes of EDOPC:cholesterol (55:45 mole/mole), at a lipid:drug mole ratio of 10:1, captured ~40% of the drug presented. Cytotoxicity assays of this formulation on multiple myeloma cells in culture showed encapsulated drug to be up to 10-fold more effective than free drug, depending upon dose. Intracellular distribution studies (based on fluorescent derivatives of lipids and of ATP) revealed that both liposomes and drug were taken up by multiple myeloma cells, and that uptake of a fluorescent ATP derivative was significantly greater when encapsulated than when free. Liposomes prepared from EDPPC, having a higher phase-transition temperature than EDOPC, captured 8-NH?-ATP satisfactorily and released it more slowly than the unsaturated formulations, but were also less cytotoxic. The superior encapsulation efficiencies of the positively charged liposomes can be understood in terms of the electrostatic double layer due to a very high positive charge density on their inner surface. Electrostatic augmentation of encapsulation for small vesicles can be dramatic, easily exceeding an order of magnitude.  相似文献   

2.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL‐α‐phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of α‐tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 µm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

3.
Liposomes are effectively used in the treatment of microbial infections. Higher cellular uptake has been reported when antibiotics are encapsulated in liposomes. In this study, enrofloxacin (ENF) was encapsulated in large unilamellar vesicles (LUVs) and the effects of formulation variables on the liposome characteristics were investigated. Liposomes were prepared using dry lipid film method. A number of variables such as molar ratios of phospholipid (DPPC; DL-alpha-phosphatidylcholine dipalmitoyl), cholesterol, ENF and amount of alpha-tocopherol and the volumes of internal (chloroform) and external phases [phosphate buffered saline PBS (pH 7.4)] were studied. In vitro characterization of the liposomes including the encapsulation capacity, size and drug release properties were carried out. Using of this method, spherical LUV liposomes with high drug content could be produced. Particle size of liposomes changed between 3.12 and 4.95 microm. The molar ratios of DPPC, cholesterol and ENF affected the size of the liposome (p < 0.05). The drug encapsulation capacities were high and changed between 37.1% and 79.5%. The highest ENF encapsulation was obtained with the highest cholesterol content. An increase in the drug encapsulation capacity of the liposome was found with increasing molar ratios of DPPC, cholesterol and ENF (p < 0.05). Furthermore, the release of ENF from the liposomes decreased as the molar ratios of DPPC, cholesterol and ENF increased (p < 0.05). In conclusion, a convenient colloidal carrier for the controlled release of ENF can be prepared by changing the formulation parameters of LUVs.  相似文献   

4.
5.
6.
Seabuckthorn (SBT; Hipphophae rhamnoides) leaf extract obtained by supercritical carbon dioxide (SCCO(2)) using ethanol as an entrainer, containing mainly flavanoids as bioactive principles with antioxidant and antibacterial properties, was used for the preparation of liposomes. Liposomes are promising drug carriers with sustained release because they can enhance the membrane penetration of drugs, deliver the entrapped drugs across cell membranes, and improve extract stability and bioavailability. The aim of the present study was to compare the two different methods of liposome production: the Bangham thin-film method and SCCO(2) gas antisolvent method (SCCO(2) GAS) for the incorporation of SBT leaf extract in terms of particle size, morphology, encapsulation efficiency, antioxidant activity, and thermal stability. Liposomes obtained with the thin-film method were multilamellar vesicles with average particle size (3,740 nm), encapsulation efficiency (14.60%), and particle-size range (1.57-6.0 μm), respectively. On the other hand, liposomes by the SCCO(2) GAS method were nanosized (930 nm) with an improved encapsulation efficiency (28.42%) and narrow range of size distribution (0.48-1.07 μm), respectively. Further, the antioxidant activity of leaf extract of SBT was determined by the 2 diphenyl-1-picrylhydrazyl method and expressed as Trolox equivalents as well as of the intercalated extract in liposomes. The oxidative stability of SBT encapsulated in liposomes was again estimated using differential scanning calorimetry (DSC). Thermal-oxidative decomposition of the samples (i.e., pure liposomes and encapsulated extracts) and the modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were also studied by DSC. After encapsulation in liposomes, antioxidant activity proved to be higher than those of the same extracts in pure form.  相似文献   

7.
The preparation of fused materials using liposomes has been examined for several decades as a tool for the stabilization of heterogeneous enzymes. We investigated the liposomal encapsulation of lysosomal enzymes extracted from Saccharomyces cerevisiae. Liposomes were formed with L-α-phosphatidylcholine from egg yolk and cholesterol. To encapsulate whole lysosomal enzymes in liposomes made with and without cholesterol, L-α-phosphatidylcholine and cholesterol were added to chloroform at a ratio of 10:0 (L-α-phosphatidylcholine:cholesterol) and then evaporated for 10 min at 4°C. The residue after evaporation was mixed with lysosomal enzymes at the same ratio and then vortexed for 1 min and sonicated for 5 sec to encapsulate the enzymes. Liposome-encapsulated lysosomal enzymes were created using various amounts of lysosomal enzymes and cholesterol. The results indicated that the optimal encapsulation conditions were lipid:cholesterol ratios of 7:3 and 8:2. Liposome formation was confirmed by TEM imaging. After 1 day, two types of liposomes released small amounts of lysosomal enzymes. However, after 6 days, liposomes formed from mixtures of lipid and cholesterol did not exhibit any changes, whereas liposomes formed from only lipids released high amounts of lysosomal enzymes. Lysosomal enzymes encapsulated in liposomes have potential as important drug delivery carriers, as liposomes are able to control drug release and bioavailability.  相似文献   

8.
Liposomes can be loaded with weak acids and bases, which exist in solutions in equilibrium with membrane permeable uncharged form, using various gradients across their membranes. Because in some cases the estimated drug concentration in the loaded liposomes exceeds their aqueous solubility we investigated the physical state of the liposome encapsulated anticancer drug Doxorubicin. X-Ray diffraction, electron microscopy, and test tube solubility experiments have shown that upon encapsulation the drug molecules form a gel-like phase.  相似文献   

9.
Negatively charged liposomes are endocytosed by the coated vesicle system and accumulate in acidic intracellular vesicles. Liposomes that become unstable at acidic pH improve cytoplasmic delivery of membrane-impermeant macromolecules such as calcein (CAL) and FITC dextran (18 or 40 kDa). Oleic acid (OA): phosphatidylethanolamine (PE) (3:7 mole ratio) liposomes become permeable to CAL at pH less than 7.0. Control liposomes of phosphatidylserine:PE or OA:phosphatidylcholine are stable at pH 4-8. OA:PE liposomes promote cytoplasmic delivery of encapsulated CAL to CV-1 cells, as evidenced by the emergence of diffuse, cytoplasmic CAL fluorescence. Delivery requires metabolic energy and is partially inhibited by chloroquine or monensin, which raise the pH of intracellular vesicles.  相似文献   

10.
Liposomes loaded with ketorolac tromethamine salt were prepared by using a thin layer evaporation method. The physical properties of liposomes were studied by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The relationship between lipid composition, encapsulation efficiency, vesicle size, and the release of ketorolac tromethamine-loaded liposomes was studied. The drug content was found to be dependent on the lipidic composition used in the preparations and, in particular, vesicles containing both cationic lipids (dimethyldioctadecylammonium bromide and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and phosphatidylcholine had a higher entrapped efficiency than liposomes with phosphatidylcholine alone or in the presence of cholesterol. Finally, the cationic liposomes appear to be useful as carriers for ketorolac tromethamine to control its in vitro release.  相似文献   

11.
Liposomes loaded with ketorolac tromethamine salt were prepared by using a thin layer evaporation method. The physical properties of liposomes were studied by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The relationship between lipid composition, encapsulation efficiency, vesicle size, and the release of ketorolac tromethamine-loaded liposomes was studied. The drug content was found to be dependent on the lipidic composition used in the preparations and, in particular, vesicles containing both cationic lipids (dimethyldioctadecylammonium bromide and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and phosphatidylcholine had a higher entrapped efficiency than liposomes with phosphatidylcholine alone or in the presence of cholesterol. Finally, the cationic liposomes appear to be useful as carriers for ketorolac tromethamine to control its in vitro release.  相似文献   

12.
Context: Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail.

Objective: The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms.

Materials and methods: Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were ?13 and 8?mV, respectively, and both had a mean particle size of approximately 180?nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy.

Results: The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms.

Discussion and conclusion: In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.  相似文献   

13.
The properties of multibilayered liposomes formed from mixtures of sphingomyelin and phosphatidylcholine in varying mole ratio (all containing one mole dicetylphosphate per 10 moles of phospholipids) have been studied. The principal findings are: (1) Over the range 0 to 1 mole fraction sphingomyelin the liposomes exhibit multibilayer structure as visualized by electron microscopy using negative staining. (2) The two phospholipids differ in their interaction with dicetylphosphate in a bilayer structure. In mixtures of the two the effect of sphingomyelin is dominant. (3) The ability of sphingomyelin to form osmotically active liposomes depends on its fatty acid's composition. (4) Liposomes of all mole fractions of sphingomyelin are osmotically active if the C24: 1 fatty acid content of sphingomyelin exceeds 10% of the total acyl residues. The degree of osmotic activity, however, depends upon the molar ratio between the two phospholipids. The highest initial rate of water permeability was found for lecithin liposomes. The maximal change of volume by osmotic gradients was obtained for liposomes composed of 1:1 lecithin to sphingomyelin (mole ratio). (5) Permeability to glucose increased with increasing lecithin mole fraction. (6) Liposomes composed of 1:1 lecithin to sphingomyelin have the largest aqueous volume per mole of phospholipid as measured by glucose trapping. (7) The osmotic fragility of liposomes made of sphingomyelin is higher than for those made of lecithin but the highest osmotic fragility was obtained for liposomes containing lecithin and sphingomyelin in 1:1 molar ratio. (8) When the temperature is abruptly lowered to about 2 degrees C, lipsomes formed from phosphatidylcholine release about 20% of trapped glucose during a transient increase in permeability. Liposomes containing 0.5 mole fraction sphingomyelin release about 30% of the trapped glucose under these conditions. Liposomes composed of sphingomyelin alone do not exhibit this phenomenon.  相似文献   

14.
Incorporation of [2-14C]-8-azaguanine into positively charged single and multiple component dipalmitoyl-DL-α-phosphatidylcholine and egg yolk phosphatidylcholine liposomes has been established. The extent of encapsulation in single compartment liposomes is 0.70–1.80% and it depends on the concentration of the added 8-azaguanine and the sonication time. Utilizing dialysis, the leakage of the drug from the single compartment liposomes after 20 hours was determined to be 4–34%. At high concentration of the added drug it is possible to encapsulate 18×10?9 pmole of 8-azaguanine per liposome. Percentages of uptake into multicompartment liposomes are 3.6–5.4%. A preliminary study has been carried out on the effects of free and single and multiple compartment encapsulated 8-azaguanine on the survival and weight gains of leukemia L-1210 bearing mice.  相似文献   

15.

The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability.

  相似文献   

16.
Liposomes are colloidal structures formed by the self-assembly of lipid molecules in solution into spherical, self-closed structures through their amphiphilic properties. All liposome preparation protocols reported consist of several steps of preparation, homogenization, and purification, which are labor-intensive, arduous, and lengthy to execute. In this work, a new procedure has been developed to reduce the time of the postrehydration sizing of liposomes from multilamellar vesicles, while improving the uniformity of the resulting liposomes produced and achieving high encapsulation efficiencies. For the homogenization step, the typically used method of filter extrusion was substituted by centrifugation. Purification of liposomes to eliminate nonencapsulated molecules and lipids is routinely carried out via gel permeation chromatography, an extremely lengthy procedure, and in the method we report, this lengthy step was replaced by the use of molecular-weight cut-off filters. Using this novel method, large unilamellar vesicles were produced and the time required, postrehydration, was dramatically reduced from almost 48 to less than 2 hours, with a highly uniformly sized population of liposomes being produced—the homogeneity of the liposome population achieved using our method was 99%, as compared to 88% attained by using the traditional method of production. We have used this approach to encapsulate fluorescein isothiocyanate (FITC), and 160,000 FITC molecules were encapsulated and the liposomes were demonstrated to be stable for at least 10 weeks at 4°C.  相似文献   

17.
The potential of anionic liposomes for oligonucleotide delivery was explored because the requirement for a net-positive charge on transfection-competent cationic liposome-DNA complexes is ambiguous. Liposomes composed of phosphatidylglycerol and phosphatidylcholine were monodisperse and encapsulated oligonucleotides with 40-60% efficiency. Ionic strength, bilayer charge density, and oligonucleotide chemistry influenced encapsulation. To demonstrate the biological efficacy of this vector, antisense oligonucleotides to p53 delivered in anionic liposomes were tested in an in vitro model of excitotoxicity. Exposure of hippocampal neurons to glutamate increased p53 protein expression 4-fold and decreased neuronal survival to approximately 35%. Treatment with 1 microm p53 antisense oligonucleotides in anionic liposomes prevented glutamate-induced up-regulation of p53 and increased neuronal survival to approximately 75%. Encapsulated phosphorothioate p53 antisense oligonucleotides were neuroprotective at 5-10-fold lower concentrations than when unencapsulated. Replacing the anionic lipid with phosphatidylserine significantly decreased neuroprotection. p53 antisense oligonucleotides complexed with cationic liposomes were ineffective. Neuroprotection by p53 antisense oligonucleotides in anionic liposomes was comparable with that by glutamate receptor antagonists and a chemical inhibitor of p53. Anionic liposomes were also capable of delivering plasmids and inducing transgene expression in neurons. Anionic liposome-mediated internalization of Cy3-labeled oligonucleotides by neurons and several other cell lines demonstrated the universal applicability of this vector.  相似文献   

18.
We have examined the growth-inhibitory potency of several pteridines encapsulated in negatively charged liposomes, including methotrexate, methotrexate-gamma-methylamide, methotrexate-gamma-dimethylamide, methotrexate-alpha-aspartate, and a lipophilic methotrexate-phosphatidylethanolamine conjugate. The potency of encapsulated methotrexate is greater than the potency of the free drug for CV1-P cells, but not for other cell lines. The potency of methotrexate-gamma-methylamide and methotrexate-gamma-dimethylamide is only minimally improved by encapsulation. The potency of methotrexate-alpha-aspartate is increased by encapsulation. In addition, the lipophilic methotrexate derivative has demonstrable potency when incorporated in liposomes. We have also examined the potency of several pteridines under conditions where the cells are exposed to the drug for periods shorter than the entire growth assay. Reduction of the exposure time decreases the potency of both encapsulated and free drugs. However, the difference in potency between the encapsulated and free drug is increased, because the potency of the encapsulated drug is affected less. Consequently, encapsulated methotrexate-gamma-aspartate is 300-fold more potent than free drug, if CV1-P cells are exposed to drug for 4 h. Moreover, encapsulated methotrexate is more potent than free methotrexate for growth inhibition of L929 fibroblasts, if the term of exposure is less than 8 h. Potency is least affected by reduction of exposure length for the lipophilic methotrexate derivative.  相似文献   

19.
20.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 degrees C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号