首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A meeting of somatosensory and developmental biologists was held on November 10 and 11, 1995, in San Diego, California, to consider recent findings pertaining to the somatosensory system. The focus of this, the eighth annual Barrels Symposium (Barrels VIII), was on somatosensory circuits and plasticity, and the development of somatosensory primary afferent projections and barrel-like aggregates in the brainstem, thalamus, and cortex  相似文献   

2.
Beginning from a biologically based integrate and fire model of a rat whisker barrel, we employ semirigorous techniques to reduce the system to a simple set of equations, similar to the Wilson-Cowan equations, while retaining the ability for both qualitative and quantitative comparisons with the biological system. This is made possible through the clarification of three distinct measures of population activity: voltage, firing rate, and a new term called synaptic drive. The model is activated by prerecorded neural activity obtained from thalamic barreloid neurons in response to whisker stimuli. Output is produced in the form of population PSTHs, one each corresponding to activity of spiny (excitatory) and smooth (inhibitory) barrel neurons, which is quantitatively comparable to PSTHs from electrophysiologically studied regular-spike and fast-spike neurons. Through further analysis, the model yields novel physiological predictions not readily apparent from the full model or from experimental studies.Abbreviations PW Principal Whisker - AW Adjacent Whisker - RSU Regular-Spike Unit (excitatory/spiny) - FSU Fast-Spike Unit (inhibitory/smooth) - TCU Thalamocortical Unit - VPM Ventral Posterior Medical Nucleus - PSTH Peristimulus Histogram - PSP Post-Synaptic Potential - CTR Conditioned-Test Ratio  相似文献   

3.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried.

Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons.

These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

4.
Field stimulation of the jejunum elicited successively an action potential of spike form, a slow excitatory depolarization, a slow inhibitory hyperpolarization, and a postinhibitory depolarization as a rebound excitation. The slow depolarization often triggered the spike. The inhibitory potential showed lower threshold than did the excitatory potential. Both the excitatory potentials were abolished by atropine and tetrodotoxin. Effective membrane resistance measured by the intracellular polarizing method was reduced during the peak of the excitatory potential, but the degree of reduction was smaller than that evoked by iontophoretic application of acetylcholine. Conditioning hyperpolarization of the muscle membrane modified the amplitude of the excitatory potential. The estimated reversal potential level for the excitatory potenialt was about 0 mv. No changes could be observed in the amplitude of the inhibitory potential when hyperpolarization was induced with intracellularly applied current. Low [K]o and [Ca]o blocked the generation of the excitatory potential but the amplitude of the inhibitory potential was enhanced in low [K]o. Low [Ca]o and high [Mg]o had no effect on the inhibitory potential.  相似文献   

5.
《Current biology : CB》2020,30(9):1589-1599.e10
  1. Download : Download high-res image (213KB)
  2. Download : Download full-size image
  相似文献   

6.
We have previously reported that ischemia reperfusion injury results from free radical generation following transient global ischemia, and that this radical induced damage is evident in the synaptosomal membrane of the gerbil. [Hall et al, (1995) Neuroscience 64: 81–89] In the present study we have extended these observations to transient focal ischemia in the cat. We prepared synaptosomal membranes from frontal, parietal-temporal, and occipital regions of the cat cerebral cortex with reperfusion times of 1 and 3 hours following 1 hour right middle cerebral artery occlusion. The membranes were selectively labeled with protein and lipid specific paramagnetic spin labels and analyzed using electron paramagnetic resonance spectrometry. There were significant motional changes of both the protein and lipid specific spin labels in the parietal-temporal and occipital regions with 1 hour reperfusion; but, both parameters returned to control values by 3 hours reperfusion. No significant changes were observed in the normally perfused frontal pole at either reperfusion time. These results support the argument that free radicals play a critical role in cell damage at early reperfusion times following ischemia.  相似文献   

7.
"面口合谷收"是上千年来祖国医学在医疗实践中的经验总结,指位于手阳明大肠经的"合谷穴"能有效治疗大肠经远端循行所过部位"面口部"的疾患(如牙痛、面神经麻痹等).本研究采用单电极和阵列电极电生理技术探讨来自口面部和手部的传入在恒河猴感觉皮层神经元的位域关系,探讨"面口合谷收"的脑机制.在3b区可以记录到外周感受野分布在合谷穴区和口面部相互毗邻的神经元,也记录到合谷-下唇双感受野的会聚神经元.电生理学绘制3b皮层位域图的结果表明,这些神经元确实是在3b皮层并不重合但相互接壤.结扎正中神经和桡神经3个月后3b皮层拇指-口面交接部神经元能够发生可塑性变化.口面部刺激引起反应皮层位域明显扩大深入到拇指的皮层1~2 mm处,表明拇指皮层位域发生了明显的功能重组.本研究表明,"面口合谷收"的脑机制是相互间的接壤关系,并在神经损伤情况下会发生相互"入侵"的脑功能重组的可塑性变化.  相似文献   

8.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

9.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

10.
Dovgalets  G. V.  Tal'nov  A. N. 《Neurophysiology》2004,36(3):207-217
We recorded electromyographic (EMG) reactions from the flexors of the elbow joint and evoked potentials (EP) from the somatic cortex (fields 3, 4, and 6) of unanesthetized cats. These reactions were elicited by perturbation of an external extensor loading applied to the arm and evoking passive extension of the elbow joint. Perturbation of the loading was performed in two modes: (i) with different fixed force moments within a 0.04–0.2 N·m range, but with a constant rate of change in this moment (3.2 N·m·sec–1), and (ii) with a constant force moment magnitude (0.2 N·m), but with different rates of change in this moment (from 0.1 to 6.4 N·m·sec–1). When the elbow joint was passively extended, an EMG response was generated in the m. biceps brachii. The amplitude of this response correlated with the amplitude of perturbation of the external loading, and the time course of the response was rather close to that of the evoked passive moment. It was possible to differentiate several (up to seven) successive components in EP recorded from the three above-mentioned cortical fields; among them, the component N(50–60) was the most stable and clearly manifested. Its amplitude did not depend on the level of external loading and decreased with a decrease in the rate of loading perturbation. The time course of the N(50–60) changed insignificantly with variation of temporal parameters of the stimulus and of the evoked movement. We conclude that the spinal level and the cortical level responsible for formation of the stretch reflex differ significantly from each other in their functional roles. Reactions of the spinal level (which could be characterized by changes in EMG) are to a greater extent related to a change in the position of the limb link, while reactions of the cortical level (EP) are determined by the arrival of information about changes in the forces applied to the joint. Neurons of the somatic cortex, which are excited in the course of the stretch reflex, cannot be considered the main source responsible for generation of the M2 component of the myographic response. It is supposed that the cortical level predetermines the formation of non-reflex motor commands related to motor reflexes closed in the somatic brain cortex.  相似文献   

11.
The effects of depolarizing stimuli; high (50 mM) potassium ions and the glutamate receptor agonists N-methyl-D-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) on the release of newly-loaded [3H]dopamine were studied in frontal cortical and striatal slices from control rats and from rats with acute hepatic encephalopathy induced with a hepatotoxin, thioacetamide. Hepatic encephalopathy enhanced the stimulatory effect of potassium ions by 20% in striatal slices and by 34% in frontal cortical slices. In striatal slices the stimulatory effects of N-methyl-D-aspartate and kainate were depressed in hepatic encephalopathy by 46% and 21%, respectively, which may be taken to reflect impaired modulation of striatal dopamine release by glutamate acting at N-methyl-D-aspartate or kainate receptors. In frontal cortical slices, the stimulatory effect of kainate was enhanced by 35% in hepatic encephalopathy but N-methyl-D-aspartate-stimulated release was not affected. The release evoked by 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate was not affected in hepatic encephalopathy in either brain region. Stimulation of dopamine release in the frontal cortex by depolarization or glutamate acting at kainate receptors could inhibit the activity of descending corticostriatal glutamatergic pathways, further impairing regulation of dopamine release by glutamate in the stratum.  相似文献   

12.
We describe a Triton-insoluble cytoskeletal fraction extracted from cerebral cortex of young rats retaining an endogenous Ca2+-mediated mechanism acting in vitro on Ca2+/calmodulin-dependent protein kinase II (CaM-KII) activity and on phosphorylation and proteolysis of the 150 kDa neurofilament subunit (NF-M), α and β tubulin. Exogenous Ca2+ induced a 70% decrease in the in vitro phosphorylation of the NF-M and tubulins and a 30–50% decrease in the total amount of these proteins. However, when calpastatin was added basal phosphorylation and NF-M and tubulin content were recovered. Furthermore, exogenous Ca2+/calmodulin induced increased in vitro phosphorylation of the cytoskeletal proteins and CaM-KII activity only in the presence of calpastatin, suggesting the presence of Ca2+-induced calpain-mediated proteolysis. This fraction could be an interesting model to further studies concerning the in vitro effects of Ca2+-mediated protein kinases and proteases associated with the cytoskeletal fraction.  相似文献   

13.
The neurochemical profile of the cortex develops in a region and time specific manner, which can be distorted by psychiatric and other neurological pathologies. Pre-clinical studies often involve experimental mouse models. In this study, we determined the neurochemical profile of C57BL/6 mice in a longitudinal study design to provide a reference frame for the normal developing mouse cortex. Using in vivo proton NMR spectroscopy at 14 T, we measured the concentrations of 18 metabolites in the anterior and posterior cortex on postnatal days (P) 10, 20, 30, 60 and 90. Cortical development was marked by alterations of highly concentrated metabolites, such as N-acetylaspartate, glutamate, taurine and creatine. Regional specificity was represented by early variations in the concentration of glutamine, aspartate and choline. In adult animals, regional concentration differences were found for N-acetylaspartate, creatine and myo-inositol. In this study, animals were exposed to recurrent isoflurane anaesthesia. Additional experiments showed that the latter was devoid of major effects on behaviour or cortical neurochemical profile. In conclusion, the high sensitivity and reproducibility of the measurements achieved at 14 T allowed us to identify developmental variations of cortical areas within the mouse cortex.  相似文献   

14.
Postnatal development of glutamate decarboxylase was studied in the rat cerebral cortex. Two methods were used: estimation of the enzymatic activity of glutamate decarboxylase in homogenates of developing cortical tissue and visualization of structures containing glutamate decarboxylase-like immunoreactivity. Glutamate decarboxylase-like immunoreactivity appeared first in perikarya and dendrites and only later in axons and axon varicosities. The most rapid increase in the glutamate decarboxylase activity took place during the second postnatal week and this coincided with a rapid increase in the density of axon varicosities containing glutamate decarboxylase-like immunoreactivity but preceded the most rapid phase in the formation of GABAergic synapses by several days. However, there was a change in the characteristics of glutamate decarboxylase which correlated with GABA synaptogenesis: two fractions of glutamate decarboxylase with different sensitivities to the activating effects of Triton X-100 could be distinguished as from about the time when most of the GABAergic synapses are formed.  相似文献   

15.
The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.  相似文献   

16.
This paper addresses testing the goodness of fit of models for marginal probabilities estimated by generalized estimating equations. We develop a modified version of generalized estimating equation and a goodness‐of‐fit test based on the fitted marginal means. The test statistic is easy to compute and has a simple reference distribution. Its performance is evaluated asymptotically and in small samples. It is also compared to the deviance and Pearson X2 statistics. Example applications are given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Neuronal nuclei were isolated from rabbit cerebral cortex, and lipid acetylation reactions were studied because of the high nuclear concentration of acetyltransferases that generate platelet activating factor (PAF) and its acyl analogue AcylPAF. The neuronal nuclear acetylation of 1-palmitoyl lysophosphatidylcholine (lyso PC) was found to be increased more than two fold when low concentrations of lyso PC were incubated in acetylation assays in the presence of 1-palmitoyl lysophosphatidic acid (lyso PA) or 1-hexadecyl glycerophosphate (AGP). This effect was not found for a variety of other acidic and neutral 1-acyl lysoglycerophospholipids. At 4 M concentrations, AGP was the more effective in increasing rates of lyso PC acetylation, while lyso PA was more effective at 25-35 M. 1-Stearoyl, 1-alkenyl and 1-decanoyl analogues of lyso PA were all less effective than 1-palmitoyl lyso PA. Phosphatidic acid was considerably less effective than lyso PA, while the acetylated analogue of AGP, AAcGP (alkylacetylglycerophosphate), increased rates of lyso PC to maxima similar to those seen with lyso PA or AGP. In addition, AAcGP promoted these maxima at considerably lower concentrations (2-4 M). A mechanism for these effects was suggested when nuclear envelopes (NE), isolated in the presence of PMSF, showed these maximal acetylation rates at low lyso PC concentrations, and these rates were not elevated by the presence of lyso PA. PMSF is a protease inhibitor but can also inhibit lysophospholipase activity. We found a nuclear lysophospholipase that degraded lyso PC at rates more than 13 times those of nuclear lyso PC acetylation. PMSF did inhibit this nuclear lysophospholipase, as did lyso PA, AGP and AAcGP. Kinetic analyses of the effects of lyso PA, AGP and AAcGP on lyso PC lysophospholipase indicated that these three lipids acted as competitive inhibitors for the lyso PC substrate. It is possible that low rates of lyso PC acetylation seen in neuronal nuclei at low lyso PC concentrations, are caused by lyso PC loss mediated by a very strong nuclear lysophospholipase. The effects of lyso PA, AGP and AAcGP in boosting rates of lyso PC acetylation likely come from the inhibition of nuclear lysophospholipase and a preservation of lyso PC concentrations. Competing neuronal nuclear reactions for low endogenous levels of lyso PC may regulate the formation of AcylPAF, and rising lyso PA, AGP or AAcGP concentrations can increase rates of nuclear AcylPAF synthesis.  相似文献   

18.
A nonlinear dependence of the amplitude of excitatory postsynaptic potentials on the membrane potentials was derived. The existence of a region of oscillation stability with an increase in the mean value of nonspecific afferent inflow was demonstrated. A high-frequency oscillation component (40–60 Hz) appears with a pronounced increase in the afferent inflow; this can cause instability in oscillations and abnormal brain activity.  相似文献   

19.
This review examines aspects of cetacean brain structure related to behaviour and evolution. Major considerations include cetacean brain-body allometry, structure of the cerebral cortex, the hippocampal formation, specialisations of the cetacean brain related to vocalisations and sleep phenomenology, paleoneurology, and brain-body allometry during cetacean evolution. These data are assimilated to demonstrate that there is no neural basis for the often-asserted high intellectual abilities of cetaceans. Despite this, the cetaceans do have volumetrically large brains. A novel hypothesis regarding the evolution of large brain size in cetaceans is put forward. It is shown that a combination of an unusually high number of glial cells and unihemispheric sleep phenomenology make the cetacean brain an efficient thermogenetic organ, which is needed to counteract heat loss to the water. It is demonstrated that water temperature is the major selection pressure driving an altered scaling of brain and body size and an increased actual brain size in cetaceans. A point in the evolutionary history of cetaceans is identified as the moment in which water temperature became a significant selection pressure in cetacean brain evolution. This occurred at the Archaeoceti - modern cetacean faunal transition. The size, structure and scaling of the cetacean brain continues to be shaped by water temperature in extant cetaceans. The alterations in cetacean brain structure, function and scaling, combined with the imperative of producing offspring that can withstand the rate of heat loss experienced in water, within the genetic confines of eutherian mammal reproductive constraints, provides an explanation for the evolution of the large size of the cetacean brain. These observations provide an alternative to the widely held belief of a correlation between brain size and intelligence in cetaceans.  相似文献   

20.
Transamination of the branched-chain amino acids produces glutamate and branched-chain alpha-ketoacids. The reaction is catalyzed by branched-chain aminotransferase (BCAT), of which there are cytosolic and mitochondrial isoforms (BCATc and BCATm). BCATc accounts for 70% of brain BCAT activity, and contributes at least 30% of the nitrogen required for glutamate synthesis. In previous work, we showed that BCATc is present in the processes of glutamatergic neurons and in cell bodies of GABAergic neurons in hippocampus and cerebellum. Here we show that this metabolic enzyme is expressed throughout the brain and spinal cord, with distinct differences in regional and intracellular patterns of expression. In the cerebral cortex, BCATc is present in GABAergic interneurons and in pyramidal cell axons and proximal dendrites. Axonal labeling for BCATc continues into the corpus callosum and internal capsule. BCATc is expressed by GABAergic neurons in the basal ganglia and by glutamatergic neurons in the hypothalamus, midbrain, brainstem, and dorsal root ganglia. BCATc is also expressed in hypothalamic peptidergic neurons, brainstem serotoninergic neurons, and spinal cord motor neurons. The results indicate that BCATc accumulates in neuronal cell bodies in some regions, while elsewhere it is exported to axons and nerve terminals. The enzyme is in a position to influence pools of glutamate in a variety of neuronal types. BCATc may also provide neurons with sensitivity to nutrient-derived BCAAs, which may be important in regions that control feeding behavior, such as the arcuate nucleus of the hypothalamus, where neurons express high levels of BCATc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号