首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract

When considering the use of combination therapies with liposomal anticancer agents several approaches can be defined. One approach could rely on administration of one liposomal formulation with more than one entrapped cytotoxic drug. This study focuses on an assessment of a liposomal formulation containing vincristine and mitoxantrone. Distearoyl phosphatidylcholine (DSPC)/Cholesterol (Choi) (55:45 molar ratio) liposomes were loaded with vincristine using transmembrane pH gradients. These systems were subsequently incubated with mitoxantrone to effect uptake of the second drug. Retention of both drugs was determined in vitro and in vivo. In vitro drug release indicated >95% retention of mitoxantrone and approximately 75% retention of vincristine when liposomes were prepared with an initial interior pH of 2.0. In vivo results however, demonstrated that greater than 80% of the encapsulated vincristine was released within 1 hour following i.v. administration. The instability of a liposomal formulation containing two anticancer drugs following i.v. administration may be a consequence of a combination of factors including drug-loading induced collapse of the transmembrane pH gradient, loss due to osmotic effects and an associated insertion of serum proteins into the bilayer, as well as the presence of a large biological “sink” which can alter the transbilayer drug gradient in favor of drug release.  相似文献   

2.
Abstract

Vincristine is one of the most commonly administered anticancer drugs and is active in a wide range of indications including non-Hodgkin's lymphomas, acute lymphocytic leukemias and lung cancer. Administration of vincristine in long-circulating liposomes may be expected to result in increased accumulation of drug at tumor sites due to “passive targeting” or “disease-site targeting” effects arising from the more permeable vasculature in these regions. Further, for liposomes with appropriate drug release characteristics, extended exposure of tumor cells to vincristine would result from liposomal delivery. The combination of increased drug delivery and extended duration of drug exposure may be expected to result in increased efficacy, particularly because vincristine is a cell-cycle specific drug. It is shown that vincristine can be encapsulated in large unilamellar vesicles (diameter β 100 nm) using a pH gradient (interior acidic) approach. Further, the efficacy of liposomal formulations of vincristine in animal models is highly sensitive to the drug release rate in vivo. A liposomal formulation with drug retention characteristics such that more than 50% of the vincristine is retained in the carrier 24 h following i.v. injection exhibits significantly improved antitumor efficacy in A431 xenograft and P388 murine tumor models in comparison to either free drug or leakier liposomal formulations. The clinical activity of liposomal vincristine has been investigated in relapsed or refractory non-Hodgkin's lymphoma patients at a dose level of 2 mg/m2 every two weeks. Of 83 registered patients, there were 24 responses in 68 evaluable patients. The responses according to histology are: Indolent-13%; Transformed-42%; Aggressive-45%. There were no serious cases of myelosuppression or any toxic deaths. It is concluded that liposomal vincristine can be given at high doses, is active and well tolerated and is rarely neurotoxic or myelosuppressive in these heavily pretreated patients. It appears that the benefits of low toxicity and enhanced efficacy noted in the tumor models are also observed in the clinical setting. A multicenter pivotal Phase II trial of liposomal vincristine in relapsed and refractory non-Hodgkin's lymphoma has been approved by the US FDA and is ongoing.  相似文献   

3.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

4.
S12363 is a potent therapeutic agent with a strong in vitro activity against a variety of tumor types but also a high in vivo toxicity. Loading of this drug into long-circulating liposomes is expected to enhance its therapeutic index. Pharmacokinetics of liposomal S12363 showed that circulating S12363 was entrapped into liposomes until 24 hours after intravenous injection in mice. The liposomal formulation significantly increased the plasma concentration, half-life, and AUC and decreased the plasma clearance rates and volume of distribution of S12363. Liposome extravasation was evaluated with two tumor models by both microscopic analysis and liposome radiolabeling. Liposome accumulation was much more important in the case of B16 melanoma, compared to H460 tumor, with both inoculated subcutaneously and with comparable size. H460 tumor was also inoculated into the lung. The tumor localization did not influence liposome accumulation into the tissue. The liposomal formulation injected into mice bearing B16 melanoma allowed a 10-fold accumulation of S12363 into the tumor interstitium, as compared to the solution. Bioluminescence data, supported by the survival curves of the animals, showed that S12363-liposomes were able to significantly restrict B16 melanoma progression and increase mice survival.  相似文献   

5.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T1/2) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T1/2 = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T1/2 = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T1/2 = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T1/2 = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

6.
Abstract

The toxicity and efficacy properties of doxorubicin entrapped inside liposomes are sensitive to the physical characteristics of the vesicle carrier system. Studies addressing such relationships must use preparation procedures with the ability to independently vary vesicle size, lipid composition and drug to lipid ratio while maintaining high trapping efficiencies. The transmembrane pH gradient-driven encapsulation technique allows such liposomal doxorubicin formulations to be prepared. Pharmacokinetic, toxicology and antitumour studies with these systems have revealed several important relationships between liposome physical properties and biological activity. The acute toxicity of liposomal doxorubicin is related primarily to the ability of the liposomes to retain doxorubicin after administration. Including cholesterol and increasing the degree of acyl chain saturation of the phospholipid component in the liposomes significantly decreases drug leakage in the blood, reduces cardiac tissue accumulation of doxorubicin and results in increased LD50 values. In contrast, the efficacy of liposomal doxorubicin is most influenced by liposome size. Specifically, liposomes with a diameter of approximately 100 nm or less exhibit enhanced circulation lifetimes and antitumour activity. While these relationships appear to be rather straightforward, there exist anomalies which suggest that a more thorough evaluation of liposomal doxorubicin pharmacokinetics may be required in order to fully understand its mechanism of action. A key feature in this regard is the ability to differentiate between non-encapsulated and liposome encapsulated doxorubicin pools in the circulation as well as in tumours and normal tissues. This represents a major challenge that must be addressed if significant advances in the design of more effective liposomal doxorubicin formulations are to be achieved.  相似文献   

7.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T(1/2)) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T(1/2) = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T(1/2) = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T(1/2) = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T(1/2) = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

8.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

9.
We studied the effects of multi- and single-target liposomal drugs on human gastric cancer cell AGS both in vitro and in vivo. The cytotoxic effect of dihydrotanshinone I was significantly enhanced by treatment with octreotide-polyethylene glycol(PEG)-liposome, Arg-Gly-Asp(RGD)-PEG-liposome, and RGD/octreotide-PEG-liposome encapsulated with 0.5 μg/ml of dihydrotanshinone I to AGS cell for 24 h, compared to control. Furthermore, the AGS cell survival rate for multi-target versus single target liposomal drugs was significantly suppressed. Microsocpic examination revealed that significant cell death occurred in the multi- and single-target liposomal encapsulated drug groups. Significant suppression of tumor growth in AGS cell xenograft nude mice given octreotide-PEG-liposome, RGD/octreotide-PEG-liposome encapsulated drug, versus those given a free drug was noted after 13 d of experimentation with the multi-targeted liposome: up to 60.75% and 41.2% reduction of tumor volume as compared to dimethylsulfoxide (DMSO) control and the free drug groups respectively. The treated animals showed no gross signs of toxicity. The results have potential clinical application.  相似文献   

10.
The quantitative differentiation of liposomal encapsulated and non-encapsulated drug tissue concentrations is desirable, since the efficacy and toxicity are only related to the level of non-encapsulated drug. However, such separate concentration profiles in tissues have still not been reported due to lacking analytical methodology. The encapsulation of prodrugs like prednisolone phosphate (PP) in liposomes offers new, analytical opportunities. Instantaneous dephosphorylation of PP into prednisolone (P) by phosphatases after its release from the liposome in vivo makes it possible to differentiate between the encapsulated and the non-encapsulated drug for such preparations of liposomal PP: PP represents the encapsulated drug, while P represents the non-encapsulated drug. In the here described study, the instantaneous dephosphorylation of PP by murine liver and kidney phosphatases has been verified by incubation of PP in liver and kidney homogenates followed by estimation of the dephosphorylation rate constants k and the dephosphorylation time of the expected maximal in vivo non-encapsulated drug concentrations. In vitro PP has been rapidly converted into P in the presence of homogenate from the excretory organs. The calculated values for k have shown that the liver contains more active sites per gram of tissue than the kidneys. However, the dephosphorylation of PP by these active sites is slower compared with the kidneys. Compared with other pharmacokinetic processes of P, the estimated dephosphorylation times of the expected maximal in vivo non-encapsulated drug concentrations in the liver and the kidneys are considered to be instantaneous. This enables the separate determination of the encapsulated and non-encapsulated drug concentrations in the excretory organs after administration of liposomal PP in mice generating the first pharmacokinetic profile of a liposomal preparation, in which the in vivo encapsulated and free drug tissues concentrations are measured separately. This can also gain important insights into the pharmacokinetics of liposomal formulations in general.  相似文献   

11.
The Hedgehog (Hh) pathway inhibitors have shown great promise in cancer therapeutics. SANT75, a novel compound we previously designed to specially inhibit the Smoothened (SMO) protein in the Hh pathway, has greater inhibitory potency than many of commonly used Hh inhibitors. However, preclinical studies of SANT75 revealed water insolubility and acute toxicity. To overcome these limitations, we developed a liposomal formulation of SANT75 and investigated its antitumor efficacy in vitro and in vivo. We encapsulated SANT75 into PEGylated liposome and the mean particle size distribution and zeta-potential (ZP) of liposomes were optimized. Using the Shh-light2 cell and Gli-GFP or Flk-GFP transgenic reporter zebrafish, we confirmed that liposome-encapsulated SANT75 inhibited Hh activity with similar potency as the original SANT75. SANT75 encapsulated into liposome exerted strong tumor growth-inhibiting effects in vitro and in vivo. In addition, the liposomal SANT75 therapy efficiently improved the survival time of tumor-bearing mice without obvious systemic toxicity. The pathological morphology and immunohistochemistry staining revealed that liposomal SANT75 induced tumor cell apoptosis, inhibited tumor angiogenesis as assessed by CD31 and down-regulated the expression of Hh target protein Gli-1 in tumor tissues. Our findings suggest that liposomal formulated SANT75 has improved solubility and bioavailability and should be further developed as a drug candidate for treating tumors with abnormally high Hh activity.  相似文献   

12.
Abstract

Tumor drug resistance and lack of tumor selectivity are the two main limitations of current systemic anticancer therapy. Liposomes have been shown to decrease certain doxorubicin (Dox)-related toxicities. By modifying liposome size and composition, the tumor localization of liposome entrapped drugs can be greatly enhanced. Through extensive structure-activity studies aimed at identifying anthracycline antibiotics which combine an enhanced affinity for lipid membranes and an ability to overcome multidrug resistance (MDR), we have identified Annamycin (Ann), which is ideally suited for entrapment in liposomes of different size and composition and has shown remarkable in vivo antitumor activity in different tumor models that display natural or acquired resistance to Dox. The unprecedented liposome formulation flexibility offered by Ann is expected to facilitate current efforts aimed at developing pharmaceutically acceptable liposomal-Ann formulations with optimal tumor targeting properties.  相似文献   

13.
Abstract

This overview will discuss our studies of liposomes aerosols to treat diseases of the lung and will entail (i) formulation and characterization of liposome aerosols, including dry liposome powder aerosols, (ii) modulation of the pharmacokinetic profile of liposomal drugs delivered by aerosol or intratracheal instillation, (iii) liposome-alveolar macrophage interactions in vitro and in vivo, and (iv) safety of liposome aerosols in vivo in mice, sheep and healthy human volunteers. Water-soluble agents can be retained in liposomes during aerosolization with air-pressure nebulizers within certain limitations of liposome composition, size, and operating conditions. Dry powder liposome aerosols have been formulated and deliver water-soluble encapsulated substances efficiently. Pharmacokinetic profiles of liposomal drugs delivered via intratracheal instillation exhibit typical slow release plasma profiles indicating that the carrier is the rate-limiting barrier for release. Accordingly, pulmonary mean residence times are significantly prolonged and systemic concentrations remain low. Liposomes do not inhibit the phagocytic activity of alveolar macrophages in vitro and in vivo, have no apparent histopathologic effects on lung architecture even after chronic administration, and do not alter dynamic compliance, lung resistance, paO2 and paCO2 in awake, unanesthetized sheep and in healthy human volunteers. In conclusion, liposomes are a promising innocuous aerosol delivery system for drugs to achieve prolonged localized drug concentrations in the lung or intracellular drug targeting to alveolar macrophages.  相似文献   

14.
The drug retention and circulation lifetime properties of liposomal nanoparticles (LN) containing dihydrosphingomyelin (DHSM) have been investigated. It is shown that replacement of egg sphingomyelin (ESM) by DHSM in sphingomyelin/cholesterol (Chol) (55/45; mol/mol) LN results in substantially improved drug retention properties both in vitro and in vivo. In the case of liposomal formulations of vincristine, for example, the half-times for drug release (T1/2) were approximately 3-fold longer for DHSM/Chol LN as compared to ESM/Chol LN, both in vitro and in vivo. Further increases in T1/2 could be achieved by increasing the drug-to-lipid ratio of the liposomal vincristine formulations. In addition, DHSM/Chol LN also exhibit improved circulation lifetimes in vivo as compared to ESM/Chol LN. For example, the half-time for LN clearance (Tc1/2) at a low lipid dose (15 μmol lipid/kg, corresponding to 8 mg lipid/kg body weight) in mice was 3.8 h for ESM/Chol LN compared to 6 h for DHSM/Chol LN. In addition, it is also shown that DHSM/Chol LN exhibit much longer half-times for vincristine release as compared to LN with the “Stealth” lipid composition. It is anticipated that DHSM/Chol LN will prove useful as drug delivery vehicles due to their excellent drug retention and circulation lifetime properties.  相似文献   

15.
The antimitotic agent combretastatin A-4 (CA-4) has been recently proposed as an antivascular agent for anticancer therapy. In order to reduce systemic toxicity by means of administration in liposome formulations, new lipophilic prodrugs, oleic derivatives of CA-4 and its 4-arylcoumarin analogue (CA4-Ole and ArC-Ole, respectively), have been synthesized in this study. Liposomes with mean diameter of 100 nm prepared on the basis of egg phosphatidylcholine and baker’s yeast phosphatidylinositol quantitatively included up to 15 mol% of CA4-Ole, or 7 mol% of ArC-Ole. To achieve targeting to neovascular endothelium prodrug bearing liposomes decorated with the tetrasaccharide selectin ligand Sialyl Lewis X (SiaLeX) have been also prepared. The antitumor activity was studied in vivo using the model of slow-growing mouse breast cancer. Under the dose used (22 mg/kg) and the administration protocol (four injections, one per a week, starting from the appearance of palpable tumors) cytostatic CA-4 did not reveal any anticancer effect; moreover, it even stimulated tumor growth. The liposome formulations of CA4-Ole did not demonstrate such stimulation. However, to achieve a pronounced antitumor effect, the number of injections of liposomes should be apparently increased. The cytotoxic activity of a novel antimitotic agent ArC was one order of magnitude lower in the human breast carcinoma cell culture in vitro. Nevertheless, in vivo in the mouse model of breast cancer the antitumor effect of this compound corresponded to the double equivalent dose of CA-4. The results demonstrate perspectives of SiaLeX-liposomes loaded with ArC-Ole: the preparation partially inhibited tumor growth already after the second injection. Thus, subsequent optimization of doses and regimens of administration both for ArC and liposomal ArC-Ole formulations are needed.  相似文献   

16.
Helicobacter pylori was isolated in 1982 and confirmed as a gastric pathogenic agent at the end of the 1980s. The present work deals with liposomes formulations in which are incorporated cholesteryl tetraethylene glycol oside as model ligands for H. pylori adhesins. This study is devoted to the behavior of liposomes in gastric conditions. The glycosylated vesicles are stable and the pH of the internal aqueous compartment remains close to 4 even through more acidic conditions are imposed to the external phase (pH 1.2-2). Such a pH gradient depends essentially on the nature of phospholipids used and is not extensively affected by the incorporation of the targeting agent. These aspects are particularly important to the development of liposome formulations against H. pylori, bacteria sensitive to antibiotics which are unstable in very acidic conditions.  相似文献   

17.
This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53?±?1.71 nm, ?37.4?±?7.3 mV, and 72.2?±?0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL?1 h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.  相似文献   

18.
Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6?±?3.28, 54.4?±?4.26, 56.1?±?7.48 and 46.0?±?2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16?±?4.22, 24.81?±?5.35, 8.17?±?1.81 and 8.92?±?3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.  相似文献   

19.
The pharmacokinetics (PK), biodistribution (BD), and therapeutic activity of pegylated liposomal doxorubicin formulations with different drug release rates were studied in an orthotopic 4T1 murine mammary carcinoma model. The focus of these experiments was to study the effects of different release rates on the accumulation of liposomal lipid and doxorubicin (DXR) into the tumor and cutaneous tissues of mice (skin and paws). These tissues were chosen because the clinical formulation of pegylated liposomal doxorubicin (Caelyx)/Doxi) causes mucocutaneous reactions such as palmar-plantar erythrodysesthesia (PPE). Liposomes with different doxorubicin (DXR) leakage rates were prepared by altering liposome fluidity through changing the fatty acyl chain length and/or degree of saturation of the phosphatidylcholine component of the liposome. Liposomes with fast, intermediate, and slow rates of drug release were studied. The plasma PK of the liposomal lipid was similar for all formulations, while the plasma PK of the DXR component was dependent on the liposome formulation. Liposomal lipid accumulated to similar levels in tumor and cutaneous tissues for all three formulations tested, while the liposomes with the slowest rates of DXR release produced the highest DXR concentrations in both cutaneous tissues and in tumor. Liposomes with the fastest drug release rates resulted in low DXR concentrations in cutaneous tissues and tumor. The formulation with intermediate release rates produced unexpected toxicity that was not related to the lipid content of the formulation. The liposomes with the slowest rate of drug leakage had the best therapeutic activity of the formulations tested.  相似文献   

20.
In the early 1980s, Vestar Inc., a company founded on the basis of science developed by the California Institute of Technology and the City of Hope, brought into development an imaging agent based on liposome encapsulated 111In3+. This agent, named Vescan, together with the gamma ray perturbed angular correlation spectroscopy technique to examine liposome integrity, was envisioned as a broadly applicable in vivo tumor diagnostic agent. While not ultimately commercialized, the agent was used to successfully image a variety of tumors, and was evaluated in late-stage clinical trials. Lessons learned from the formulation and process development of this product, and the wealth of non-clinical and clinical results, revealed valuable information about the properties of stable, RES avoiding conventional liposomes. This technology ultimately would lead (at NeXstar Pharmaceuticals and, later, at Gilead Sciences) to the technology that created commercialized liposomal products such as AmBisome and DaunoXome as well as other development stage product candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号