首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LPDII vectors are synthetic vehicles for gene delivery composed of polycation-condensed DNA complexed with anionic liposomes. In this study, we evaluated the stability and transfection properties of polyethylenimine (PEI, 25 kDa)/DNA polyplexes before and after covalent cross-linking with dithiobis(succinimidylpropionate) (DSP) or dimethyl x 3,3'-dithiobispropionimidate x 2HCl (DTBP), either alone or as a component of LPDII vectors. We found that cross-linking PEI/DNA polyplexes at molar ratios > or =10:1 (DSP or DTBP:PEI) stabilized these complexes against polyanion disruption, and that this effect was reversible by reduction with 20 mM dithioerythritol (DTE). Transfection studies with polyplexes cross-linked at molar ratios of 10:1-100:1 in KB cells, a folate receptor-positive oral carcinoma cell line, showed decreasing luciferase gene expression with increasing cross-linking ratio. Subsequently, polyplexes, cross-linked with DSP at a molar ratio of 10:1, were combined with anionic liposomes composed of diolein/cholesteryl hemisuccinate (CHEMS) (6:4 mol/mol), diolein/CHEMS/poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) (6:4:0.05 mol/mol), or diolein/CHEMS/folate-PEG-cholesterol (folate-PEG-Chol) (6:4:0.05 mol/mol) for LPDII formation. Transfection studies in KB cells showed that LPDII vectors containing cross-linked polyplexes mediated approximately 2-15-fold lower gene expression than LPDII prepared with un-cross-linked polyplexes, depending on the lipid:DNA ratio. Inclusion of PEG-DSPE at 0.5 mol % appeared to further decrease transfection levels approximately 2-5-fold. Compared with LPDII formulated with PEG-DSPE, LPDII incorporating 0.5 mol % folate-PEG-Chol exhibited higher luciferase activities at all lipid:DNA ratios tested, achieving an approximately 10-fold increase at a lipid:DNA ratio of 5. Compared with cross-linked LPDII vectors without PEG-DSPE, inclusion of folate-PEG-Chol increased luciferase activities 3-4-fold between lipid:DNA ratios of 1 and 5. Interestingly, inclusion of 1 mM free folate in the growth media during transfection increased transfection activity approximately 3-4-fold for cross-linked LPDII vectors and LPDII containing folate-PEG-Chol, but had no effect on the transfection activity of LPDII formulated with PEG-DSPE. However, in the presence of 5 mM free folate, the luciferase activity mediated by LPDII vectors containing folate-PEG-Chol was reduced approximately 6-fold. Transmission electron micrographs were also obtained to provide evidence of LPDII complex formation. Results showed that cross-linked LPDII vectors appear as roughly spherical aggregated complexes with a rather broad size distribution ranging between 300 and 800 nm.  相似文献   

2.
In this study, a novel lipid vector has been developed for targeted delivery of oligodeoxynucleotides (ODN) to tumors that overexpress folate receptor. This is based on a method developed by Semple et al. (1), which utilizes an ionizable aminolipid (1,2-dioleoyl-3-(dimethylammonio)propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities of polyanionic ODN in lipid vesicles. Folate is incorporated into the lipid vesicles via a distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) spacer. These vesicles are around 100-200 nm in diameter with an ODN entrapment efficiency of 60-80%. Folate mediated efficient delivery of ODN to KB cells that overexpress folate receptor. Uptake of folate-targeted lipidic ODN by KB cells is about 8-10-fold more efficient than that of lipidic ODN without a ligand or free ODN. This formulation is resistant to serum. Thus, targeted delivery of ODN via this novel lipid vector may have potential in treating tumors that overexpress folate receptors.  相似文献   

3.
Abstract

A novel lipophilic conjugate of folate, folate-PEG-Chol, was synthesized and evaluated for receptor-mediated targeting of liposomes to tumor cells. Liposomes composed of DSPC/Chol/PEG-DSPE/folate-PEG-Chol (60/ 34/5/1, m/m) were taken up by cultured folate receptor-bearing KB cells via a saturable mechanism. Cellular binding of these liposomes could be competitively inhibited by free folic acid with an IC50 of 0.39 mM, indicating an extraordinarily high binding affinity. Fluorescence micrographs of KB cells treated with targeted liposomes encapsulating calcein showed that they were distributed both on the cell surface and in intracellular vesicular compartments. Targeted liposomes carrying doxorubicin were shown to be 38 times more toxic to KB cells than non-targeted control liposomes. A biodistribution study in receptor-positive tumor-bearing C57BL/6 mice showed no significant differences between the tumor uptake of folate-PEG-liposomes and non-targeted control liposomes. This study has demonstrated that cholesterol could be used as an alternative to phospholipids as an effective anchor for incorporation of a targeting ligand into liposomes.  相似文献   

4.
A polyelectrolyte complex micelle (PECM)-based delivery system for targeting folate (FOL) receptor overexpressing tumor cells is demonstrated using poly(ethylene glycol) (PEG)-conjugated oligonucleotide (ODN). The tumor targeting property was conferred to the PECM by tethering a folate moiety to the distal end of the PEG segment in an anti-sense green fluorescent protein (GFP) ODN-PEG conjugate. Nanoscale PECMs were spontaneously produced from ionic interactions between the ODN-PEG-FOL conjugate and a cationic lipid, lipofectamine (Lf). When treated with FOL receptor overexpressing cells (KB), the PCEMs caused a significant reduction in GFP expression in a dose-dependent manner. This effect was not observed in FOL receptor deficient cells (A549). The enhanced transfection of ODN-PEG-FOL/Lf PECMs to KB cells was caused by FOL receptor mediated endocytosis. The efficiency of target-specific gene suppression by ODN-PEG-FOL/Lf PECMs was maintained even in the presence of 10% fetal bovine serum in the transfection medium.  相似文献   

5.
We designed and synthesized a folate receptor-targeted, water-soluble, and pharmacomodulated photodynamic therapy (PDT) agent that selectively detects and destroys the targeted cancer cells while sparing normal tissue. This was achieved by minimizing the normal organ uptake (e.g., liver and spleen) and by discriminating between tumors with different levels of folate receptor (FR) expression. This construct (Pyro-peptide-Folate, PPF) is composed of three components: (1) pyropheophorbide a (Pyro) as an imaging and therapeutic agent, (2) peptide sequence as a stable linker and modulator improving the delivery efficiency, and (3) Folate as a homing molecule targeting FR-expressing cancer cells. We observed an enhanced accumulation of PPF in KB cancer cells (FR+) compared to HT 1080 cancer cells (FR-), resulting in a more effective post-PDT killing of KB cells over HT 1080 or normal CHO cells. The accumulation of PPF in KB cells can be up to 70% inhibited by an excess of free folic acid. The effect of Folate on preferential accumulation of PPF in KB tumors (KB vs HT 1080 tumors 2.5:1) was also confirmed in vivo. In contrast to that, no significant difference between the KB and HT 1080 tumor was observed in case of the untargeted probe (Pyro-peptide, PP), eliminating the potential influence of Pyro's own nonspecific affinity to cancer cells. More importantly, we found that incorporating a short peptide sequence considerably improved the delivery efficiency of the probe--a process we attributed to a possible peptide-based pharmacomodulation--as was demonstrated by a 50-fold reduction in PPF accumulation in liver and spleen when compared to a peptide-lacking probe (Pyro-K-Folate, PKF). This approach could potentially be generalized to improve the delivery efficiency of other targeted molecular imaging and photodynamic therapy agents.  相似文献   

6.
Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside–TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and integrins.  相似文献   

7.
The objective of this study was to investigate the use of folate-targeted liposomes for the delivery of encapsulated oligonucleotides to folate receptor (FR)-positive tumor cells in vitro and in vivo. This project involved the synthesis and biological evaluation of many folate-PEG-lipid conjugates, where the chemical form of the folate moiety (pteroate) and the length of the PEG linker chain were varied widely. Folate-targeted oligonucleotide-containing liposomes were prepared using conventional methods, and the extent of cell uptake was evaluated using, among others, the FR positive KB cell line. Oligonucleotide-loaded folate-targeted liposomes were found to rapidly associate with the KB cells, and saturation was typically reached within the first hour of incubation at 37 degrees C. Nearly 100,000 liposomes per cell were bound or internalized at saturation. Importantly, cell association was blocked by a large excess folic acid, thus reflecting the FR-specific nature of the cell interaction. Full targeting potential was achieved with PEG linkers as low as 1000 in molecular weight, and pteroates bearing glycine or gamma-aminobutyryl residues juxtaposed to the pteroic acid moiety were also effective for targeting, provided that a terminal cysteine moiety was present at the distal end of the PEG chain for added hydrophilicity. When tested in vivo, folate-targeted liposomes were found to deliver approximately 1.8-fold more oligonucleotide to the livers of nude mice (relative to the nontargeted PEG-containing formulations); however, no improvement in KB tumor uptake was observed. We conclude from these results that folate liposomes can effectively deliver oligonucleotides into folate receptor-bearing cells in vitro, but additional barriers exist in vivo that prevent or decrease effective tumor uptake and retention.  相似文献   

8.
We have demonstrated synthesis and application of a water-soluble, folate-substituted poly(p-phenyleneethynylene) (PPE) as a fluorescent contrast agent to image cancer cells. This fluorescent polymer targets and images KB cancer cells in vitro with high selectivity. To deliver PPE to the cells, folate ligands have been attached to an amine-functionalized PPE via an amide coupling agent. The hydrolysis of the ester groups gave a water-soluble PPE, 5. The PPE 5 is minimally cytotoxic at concentrations of 1-10 microg/mL, which is sufficient to stain KB cancer cells efficiently. PPE 6, devoid of folate ligands, did not stain KB cells. As a low folic acid (-) receptor control group, NIH 3T3 fibroblast cells were incubated with 5 and did not show fluorescent labeling. The folate receptor-mediated endocytosis of KB cells was evidenced by laser scanning confocal microscopy and fluorescence microscopy. The photochemical stability and ability to sustain multivalency provide advantages of PPEs over other fluorescent contrast agents. Their minimal cytotoxicity makes the PPE superior to the cytotoxic CdSe quantum dots.  相似文献   

9.
AimsAmlodipine, a dihydropyridine Ca2+ channel blocker, inhibits the proliferation of human epidermoid carcinoma A431 cells in vitro and in vivo. This study examined the underlying mechanism of this antiproliferative effect in relation to epidermal growth factor receptor (EGFR) signaling.Main methodsThe tyrosine phosphorylated active state of EGFR in A431 cells incubated with the test agents was evaluated by western blot with anti-phosphotyrosine antibody. EGFR phosphorylation levels in A431 xenograft tumors were assessed by immunostaining of matrigel plug sections and western blotting for phosphoEGFR in A431 xenograft tumor homogenates.Key findingsIn vitro treatment of exponentially growing A431 cells with amlodipine decreased the tyrosine phosphorylation states of EGFR. Amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR and a membrane scaffolding protein, caveolin-1, in serum-starved A431 cells. Amlodipine attenuated the EGF-stimulated phosphorylation of EGFR coimmunoprecipitated with caveolin-1 without affecting the EGFR/caveolin-1 interaction. Crosslinking experiments showed that amlodipine also suppressed the EGF-stimulated phosphorylation of EGFR predimers. Addition of cholesterol abolished these inhibitory effects of amlodipine plus its inhibition of cell growth. Furthermore, treatment of mice with amlodipine (10 mg/kg/day × 7 days, i.p.) decreased the levels of phosphorylated EGFR in A431 xenograft tumors.SignificanceThe results indicated that amlodipine inhibits tyrosine phosphorylation of EGFR in vitro and in vivo, possibly via modulating cholesterol-rich, caveolin-1-containing membrane microdomains.  相似文献   

10.
Methotrexate accumulation, subcellular distribution, metabolism, and cytotoxicity were studied in human epidermoid carcinoma (KB) cells that were exposed to a low extracellular concentration of methotrexate (25 nM) following culture in widely differing concentrations of folic acid. KB cells cultured in standard medium with a high folic acid concentration (2.3 microM) had high levels of cellular folate (21.4 pmol/10(6) cells). Five passages through low folate (2.7 nM) medium reduced the level of cellular folate to near physiologic levels (0.4-1.0 pmol/10(6) cells). In contrast to KB cells cultured in standard medium, in KB cells cultured in low folate medium, 1) methotrexate inhibited growth; 2) methotrexate uptake was markedly increased; 3) methotrexate polyglutamation was almost complete; 4) methotrexate binding to dihydrofolate reductase was markedly enhanced; and 5) significant methotrexate binding to a previously undescribed membrane-associated protein occurred. The amount of methotrexate bound to the membrane-associated protein from KB cells cultured in low folate medium equaled the quantities bound by dihydrofolate reductase. Further characterization of this membrane-associated protein indicated that it was soluble in solutions containing Triton X-100, was capable of binding folic acid as well as methotrexate, had an apparent Mr of 160,000 by gel filtration in the presence of Triton X-100, and was precipitated by antiserum to human placental folate receptor. This membrane-associated protein may play an important role in the uptake and metabolism of methotrexate under physiologic conditions.  相似文献   

11.
BackgroundAdenosine receptors are involved in tumor growth, progression, and response to therapy. Among them, A2B receptor is highly expressed in various tumors. Furthermore, ionizing radiation induces translocation of epidermal growth factor receptor (EGFR), which promotes DNA repair and contributes to radioresistance. We hypothesized that A2B receptor might be involved in the translocation of EGFR.MethodsWe investigated whether A2B receptor is involved in EGFR translocation and DNA damage response (γH2AX/53BP1 focus formation) of lung cancer cells by means of immunofluorescence studies. Radiosensitivity was evaluated by colony formation assay after γ-irradiation.ResultsA2B receptor was expressed at higher levels in cancer cells than in normal cells. A2B receptor antagonist treatment or A2B receptor knockdown suppressed EGFR translocation, γH2AX/53BP1 focus formation, and colony formation of lung cancer cell lines A549, calu-6 and NCI-H446, compared with a normal cell line (beas-2b). γ-Irradiation-induced phosphorylation of src and EGFR was also attenuated by suppression of A2B receptor expression.ConclusionActivation of A2B receptor mediates γ-radiation-induced translocation of EGFR and phosphorylation of src and EGFR, thereby promoting recovery of irradiated lung cancer cells from DNA damage.General significanceOur results indicate that A2B receptors contribute to radiation resistance in a cancer-cell-specific manner, and may be a promising target for radiosensitizers in cancer radiotherapy.  相似文献   

12.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

13.
AimsThe aim of this study was to investigate the significance of epidermal growth factor receptor (EGFR) ligands produced in syncytiotrophoblasts during normal pregnancy.Main methodsWe examined the expression of EGFR ligands in human pregnancy by real-time PCR, and analyzed the relationship between EGFR ligands and human chorionic gonadotropin (hCG) or human placental lactogen in amniotic fluid by ELISA. In addition, we also examined the EGFR ligands in syncytiotrophoblasts and the amount of hCG secretion in JAR, JEG3 and BeWo cells in the presence of each EGFR ligand.Key findingsIn order to identify possible candidates among the EGFR ligands, we examined the predominant expression of an EGFR ligand in the chorionic villi and amniotic fluid during normal pregnancy, and analyzed the relationship between EGFR ligands and hCG in trophoblastic model cells. Amphiregulin was primarily expressed throughout human pregnancy and stimulated the secretion of hCG, indicating that amphiregulin is a key molecule among EGFR ligands.SignificanceAmphiregulin may play a pivotal role in the development or maturation of placenta.  相似文献   

14.
We report that cytosine arabinoside (Ara-C), a cytosine analogue that at low doses causes phenotypical changes on human leukemia cells in vitro and in vivo, induces growth inhibition of oropharyngeal cancer KB and lung adenocarcinoma A549 cell lines. An increase in the number of epidermal growth factor and transferrin receptors (EGFR, TrfR) is induced by Ara-C on these cells. Maximal EGFR up-regulation occurs 96 h after the beginning of Ara-C exposure while maximal TrfR up-regulation is detected 24 h later. These effects occur without changes in the affinity of EGFR and TrfR for their ligands. Two classes of EGF-binding sites with aK d of 0.055 nM and 2.3 nM respectively, and one class of transferrin-binding sites with aK d of about 4 nM are detected on both untreated and Ara-C-treated KB cells. [3H]Thymidine uptake is clearly stimulated on KB cells by nanomolar concentrations of EGF and transferrin, whereas in Ara-C-treated cells [3H]thymidine uptake is not increased by EGF and transferrin under conditions where maximal EGFR and TrfR up-regulation occurs. The enhanced EGF and transferrin binding is paralleled by a twofold increase of in vitro targeting of Ara-C-treated KB and A549 cells with anti-EGFR 108.1 mAb and anti-TrfR OKT9 mAb. We propose that Ara-C could provide a new approach for the improvement of the therapeutic index of anti-EGFR and anti-TrfR immunoconjugates.This work has been supported by the Italian Association for Cancer Research (A.I.R.C.) and by the National Council of Research (C.N.R.) of Italy, contract 92.02274.PF39  相似文献   

15.
Antisense oligonucleotides (ODN) targeted to specific genes have shown considerable potential as therapeutic agents. The polyanionic charges carried by these molecules, however, present a barrier to efficient cellular uptake and consequently their biological effects on gene regulation are compromised. To overcome this obstacle, a rationally designed carrier system is desirable for antisense delivery. This carrier should assist antisense ODN penetrate the cell membrane and, once inside the cell, then release the ODN and make them available for target binding. We have developed a carrier formulation employing programmable fusogenic vesicles (PFV) as the antisense delivery mediator. This study investigates the intracellular fate of PFV–ODN and bioavailability of antisense ODN to cells. The subcellular distribution of PFV and ODN was examined by monitoring the trafficking of FITC-labeled ODN and rhodamine/phosphatidylethanolamine (Rh-PE)-labeled PFV using confocal microscopy. Fluorescently tagged ODN were first co-localized with the liposomal carrier in the cytoplasm, presumably in endosome/lysosome compartments, shortly after incubation of PFV–ODN with HEK 293 and 518A2 cells. Between 24 and 48 h incubation, however, separation of FITC–ODN from the carrier and subsequent accumulation in the nucleus was observed. In contrast, the Rh-PE label was localized to the cell cytoplasm. The enhanced cellular uptake achieved using the PFV carrier, compared to incubation of free ODN with cells, and subsequent release of ODN from the carrier resulted in significant down-regulation of mRNA expression. Specifically, G3139, an antisense construct targeting the apoptotic antagonist gene bcl-2, was examined in the human melanoma cell line 518A2. Upon exposure to PFV-encapsulated G3139, cells displayed a time-dependent reduction in bcl-2 message levels. The bcl-2 mRNA level was reduced by 50% after 24 h treatment and by ~80% after 72 h when compared to cells treated with free G3139, empty PFV or PFV–G3622, a control ODN sequence. Our results establish that ODN can be released from PFV after intracellular uptake and can then migrate to the nucleus and selectively down-regulate target mRNA.  相似文献   

16.
BackgroundIt has been known epidermal growth factor receptor (EGFR) frequently overexpressed in cervical cancer. High levels of EGFR expression in their tumors leads to a poor prognosis and inhibition frequently induces autophagy in cancer cells. This study aimed to investigate whether EGFR inhibition by canertinib induces autophagy and this induction influence the effect of Palladium (Pd) (II) complex and 5-fluorouracil (5-FU) especially in nontoxic doses.MethodsCytotoxicity was evaluated by using SRB assay. Apoptosis, autophagy, and EGFR key markers were determined by flow cytometry, fluorescence staining, and immunoblotting. Colony formation, invasion, and wound healing assays were performed to investigate cell proliferation, invasion, and migration, respectively.ResultsBlocking EGFR by the pan-ErbB tyrosine kinase inhibitor canertinib inhibited cell growth of HeLa cervical cancer cells in combination with Pd(II) complex and 5-FU. Combination of canertinib and Pd(II) complex promotes autophagy and apoptosis of HeLa cancer cells via blockade of the PI3K/AKT and MAPK/ERK pathway, which leads to cervical cancer cell death. ROS accumulation and DNA damage were increased after combinatorial treatment which causes depolarization of the mitochondrial inner membrane and leads to apoptotic cell death. Canertinib combined with Pd(II) complex leads to inhibition of migration and invasion.ConclusionInhibition of EGFR signaling by canertinib in combination with Pd(II) complex promotes apoptosis and autophagy via blockade of the PI3K/AKT and MAPK/ERK.General significanceThe cytotoxic activity of Pd(II) complex and 5-FU on HeLa cells is mediated by EGFR inhibition and autophagy induction, leading to activation of mitochondrial apoptotic cell death.  相似文献   

17.
BackgroundEpidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects.MethodsSignaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2′-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by β-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation.ResultsGefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH).ConclusionHRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments.General significanceWe furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.  相似文献   

18.
DNA oligonucleotides (ODN) applied to an organism are known to modulate the innate and adaptive immune system. Previous studies showed that a CpG-containing ODN (CpG-1-PTO) and interestingly, also a non-CpG-containing ODN (nCpG-5-PTO) suppress inflammatory markers in skin. In the present study it was investigated whether these molecules also influence cell apoptosis. Here we show that CpG-1-PTO, nCpG-5-PTO, and also natural DNA suppress the phosphorylation of PKB/Akt in a cell-type-specific manner. Interestingly, only epithelial cells of the skin (normal human keratinocytes, HaCaT and A-431) show a suppression of PKB/Akt. This suppressive effect depends from ODN lengths, sequence and backbone. Moreover, it was found that TGFα-induced levels of PKB/Akt and EGFR were suppressed by the ODN tested. We hypothesize that this suppression might facilitate programmed cell death. By testing this hypothesis we found an increase of apoptosis markers (caspase 3/7, 8, 9, cytosolic cytochrome c, histone associated DNA fragments, apoptotic bodies) when cells were treated with ODN in combination with low doses of staurosporin, a well-known pro-apoptotic stimulus. In summary the present data demonstrate DNA as a modulator of apoptosis which specifically targets skin epithelial cells.  相似文献   

19.
BackgroundCytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.Conclusions/SignificanceTargeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma.  相似文献   

20.

Background

Riccardin D-26, a synthesized macrocyclic bisbibenzyl compound, might possess anti-cancer properties. We aimed to evaluate the efficacy of Riccardin D-26 as a candidate compound for treatment of cancers with sensitive or drug resistant cells.

Methods

Experiments were performed on human oral squamous carcinoma KB cells and vincristin-selected MDR KB/VCR cells. The inhibition of cell growth was evaluated by colorimetric and clonogenic assays. The apoptotic cells were determined by the Annexin V-FITC/PI staining assay. JC-1 fluorescence probe was used to examine the mitochondria membrane potential (MMP). Further experiments were performed in nude mice bearing KB or KB/VCR xenografts. Riccardin D-26 was administered by injection for 2 weeks. The specimens of KB and KB/VCR xenografts were removed for TUNEL staining and Western blotting analysis.

Results

Riccardin D-26 significantly inhibited cancer growth in both KB and KB/VCR cells. Riccardin D-26's activity in cancer cells was greater than that in human normal liver cells. In mice, Riccardin D-26 effectively prevented the growth of KB and KB/VCR xenografts without significant toxicity. Further studies suggested that Riccardin D-26 inhibited cancer growth by inducing apoptosis in the activation of mitochondria-mediated intrinsic apoptosis pathway. Riccardin D-26 also possessed this activity in regulation of mitogen-related protein kinases such as MAPK and PI3K/Akt, which is associated with its inhibitory effect on KB/VCR cells.

Conclusions

Riccardin D-26 possessed an anti-proliferation activity against both sensitive KB and MDR KB/VCR cancer cells.

General significance

Riccardin D-26 could be a promising agent for treatment of cancers with sensitive or drug resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号