首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras-transformation of cells is accompanied by an increase of the level of diacylglycerol (DAG), which participates in the signal transduction pathways. DAG could be generated from phospholipids either by activation of phospholipase C or by a more complex pathway involving phospholipase D and phosphatidate phosphohydrolase. To clarify which phospholipids produce DAG and which pathways are involved, we examined the DAG generating enzyme activities, using phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) as substrates. The study showed that the breakdown of PC and more markedly of PE by phospholipases C and D was stimulated in membranes from ras-transformed cells. Phosphatidate phosphohydrolase activity was also elevated in oncogene-expressing cells. The increase in glycerol uptake was most pronounced in cells given PE, followed by PC. The fatty acid analysis revealed apparent similarities between the acyl chains of PE and DAG only in the transformed cells. These findings suggest that PE is a source of DAG in ras-fibroblasts but does not rule out the role of PC in DAG production, due to the activation of the PC-specific phospholipases C and D.  相似文献   

2.
A novel mechanism for acetylcholine to generate diacylglycerol in brain   总被引:4,自引:0,他引:4  
The classical scheme involving inositol phospholipid breakdown by phospholipase C as the sole source of diacylglycerol (DAG) has recently been challenged by evidence that phosphatidylcholine (PC) is an alternative source. In synaptic membranes of canine cerebral cortex, cholinergic agonists caused rapid accumulation of [3H]phosphatidic acid (PA) from [3H]PC within 15 s, whereas [3H]DAG formation showed a transient lag period before becoming elevated and then exceeding the amount of [3H]PA. Additional evidence shows that DAG is produced from PC by the action of phospholipase D to yield PA, which is further dephosphorylated to DAG by PA phosphatase. Our results indicate that this muscarinic acetylcholine receptor-regulated PC phospholipase D-PA phosphatase pathway may be a novel mechanism in cell signal transduction processes for activation of protein kinase C in brain.  相似文献   

3.
Progesterone, the physiological inducer of amphibian meiosis, acts within minutes at plasma membrane receptors of the Rana pipiens oocyte to release 1,2-diacylglycerol (DAG) from plasma and intracellular membranes. High-performance liquid chromatography (HPLC) analysis of lipid extracts of uninduced oocytes indicates the presence of at least three classes of DAG with a total DAG content of about 150 micromol/kg wet weight. Within 3-5 min after exposure to progesterone, there was a differential increase in all three DAG classes with a twofold increase in total DAG by 10 min. The fatty acid composition of the DAGs in uninduced and progesterone-stimulated oocytes was compared using thin layer chromatographic analysis of lipid extracts from oocytes double-labeled with [14C] or [3H]glycerol and [14C] or [3H]fatty acids. The ratio of labeled fatty acid/labeled glycerol was measured in phosphatidylcholine (PC), phosphatidylinositol (PI) and DAG. The linoleic (18:2) or arachidonic (20:4) acid/glycerol ratios in basal DAG were low compared to that in PC or PI. In contrast, the myristic (14:0), palmitic (16:0) or oleic (18:1) acid/glycerol ratios in basal DAG were relatively high compared to the ratio in PC and PI. A transient increase in both linoleic and palmitic acid labeling of DAG occurred within the first 1-2 min in progesterone-treated oocytes, followed by a return to or below the basal level. Arachidonic and myristic acid labeling of DAG fall within the first minute after progesterone treatment, followed by a sustained rise over the next 10 min. The [3H]oleic acid/[14C]glycerol ratio of DAG does not change significantly following exposure to progesterone. Pretreatment with a phospholipid N-methylation inhibitor (2-methylaminoethane) precluded the rise in linoleic and palmitic acid-rich DAG, whereas pretreatment with a diglyceride kinase inhibitor (D102) produced a sustained elevation of linoleic and palmitic acid-rich DAG. These results indicate that the DAG released in response to progesterone is composed of multiple new molecular species of DAG and that both the palmitate and linolate-rich forms are rapidly phosphorylated to form phosphatidic acid (PA). The newly formed DAG species differ from the basal DAG species and reflect sequential activation of sphingomyelin (SM) synthase, PC-specific phospholipase D (PLD) and PI-specific phospholipase C in response to progesterone, which we have described previously.  相似文献   

4.
Zhou GP  Troy FA 《Glycobiology》2005,15(4):347-359
Earlier NMR studies showed that the polyisoprenols (PIs) dolichol (C95), dolichylphosphate (C95-P) and undecaprenylphosphate (C55-P) could alter membrane structure by inducing in the lamellar phospholipid (PL) bilayer a nonlamellar or hexagonal (Hex II) structure. The destabilizing effect of C95 and C95-P on host fatty acyl chains was supported by small angle X-ray diffraction and freeze-fracture electron microscopy. Our present 1H- and 31P-NMR studies show that the addition of a polyisoprenol recognition sequence (PIRS) peptide to nonlamellar membranes induced by the PIs can reverse the hexagonal structure phase back to a lamellar structure. This finding shows that the PI:PIRS docking complex can modulate the polymorphic phase transitions in PL membranes, a finding that may help us better understand how glycosyl carrier-linked sugar chains may traverse membranes. Using an energy-minimized molecular modeling approach, we also determined that the long axis of C95 in phosphatidylcholine (PC) membranes is oriented approximately parallel to the interface of the lipid bilayer, and that the head and tail groups are positioned near the bilayer interior. In contrast, the phosphate head group of C95-P is anchored at the PC bilayer, and the angle between the long axis of C95-P and the bilayer interface is about 758, giving rise to a preferred conformation more perpendicular to the plane of the bilayer. Molecular modeling calculations further revealed that up to five PIRS peptides can bind cooperatively to a single PI molecule, and this tethered structure has the potential to form a membrane channel. If such a channel were to exist in biological membranes, it could be of functional importance in glycoconjugate translocation, a finding that has not been previously reported.  相似文献   

5.
The purpose of the present study was to investigate the involvement of phosphatidylcholine (PC) signalling in synaptic endings incubated under oxidative stress conditions. Synaptosomes purified from adult rats (4 months old) cerebral cortex were exposed to oxidative insult (FeSO4, 50 μM) or vehicle, and diacylglycerol (DAG) generation and free fatty acid (FFA) release were subsequently evaluated using exogenous [14C]PC as substrate. DAG formation increased after 5, 30, and 60 min of Fe2+-exposure with respect to the control conditions. The contribution of PC-specific phospholipase C (PC-PLC) and phospholipase D (PLD) pathways to DAG generation was evaluated using ethanol in the enzyme assays. Phosphatidylethanol (PEth) production was measured as a marker of PLD activity. In the presence of ethanol (2%) iron significantly stimulated DAG and PEth production at all times assayed. FFA release from PC, however, was inhibited after 5 and 60 min of iron exposure. Similar results were observed in aged animals (28 months old) when compared with adult animals. DAG generation from PC was also evaluated in the presence of the tyrosine kinase inhibitors genistein and herbimycin A. Inhibition of tyrosine kinase activity did not modify the stimulatory effect exerted by iron on PC-PLC and PLD activities. Moreover, the presence of LY294002 (a specific PI3K inhibitor) did not alter DAG production. Our results demonstrate that oxidative stress induced by free iron stimulates the generation of the lipid messenger DAG from PC in synaptic endings in adult and aged rats.  相似文献   

6.
The mechanism of action by which insulin increases phosphatidic acid (PA) and diacylglycerol (DAG) levels was investigated in cultured hepatoma cells (HEPG2). Insulin stimulated phosphatidylcholine (PC) and phosphatidyl-inositol (PI) degradation through the activation of specific phospholipases C (PLC). The DAG increase appears to be biphasic. The early DAG production seems to be due to PI breakdown, probably through phosphatidyl-inositol-3-kinase (PI3K) involvement, whereas the delayed DAG increase is derived directly from the PC-PLC activity. The absence of phospholipase D (PLD) involvement was confirmed by the lack of PC-derived phosphatidylethanol production. Experiments performed in the presence of R59022, an inhibitor of DAG-kinase, indicated that PA release is the result of the DAG-kinase activity on the DAG produced in the early phase of insulin action.  相似文献   

7.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   

8.
The plasma membranes of bovine adrenal chromaffin cells were isolated and the activities of enzymes involved in arachidonic acid liberation were investigated. Only a minute activity of phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) could be detected using externally added phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as substrate. When membranes were treated with exogenous phospholipase C (orthophosphoric acid diester phosphohydrolase, EC 3.1.4.1) there was a liberation of free fatty acids from the sn-2 position of PC. The enzyme responsible for this effect could be demonstrated to be a diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) localized in the plasma membrane. Using phosphatidylinositol (PI) as a substrate, it was found that an endogenous phospholipase C exists which co-purifies with the membrane preparation. The produced diacylglycerol is subsequently hydrolyzed by diacylglycerol lipase liberating arachidonic acid. The two enzymes, phospholipase C and diacylglycerol lipase were characterized. Phospholipase C was found to be calcium dependent and PI specific, showing an activity of 60 pmol/micrograms protein per h (1.2 mM Ca2+), whereas the diacylglycerol lipase was calcium independent hydrolyzing diacylglycerol at a rate of 7.2 pmol/micrograms protein per h. The lipase but not the phospholipase C was inhibited 50% by 1.7 mM para-bromophenacylbromide.  相似文献   

9.
15-Hydroxyeicosatetraenoic acid (15-HETE), a major lipoxygenase metabolite of arachidonic acid in fetal bovine aortic endothelial cells, was a mitogen for these cells, stimulating both cell proliferation and DNA synthesis in the presence of serum and serum-deprived cells. In [14C]arachidonic acid-labeled confluent endothelial cell monolayers, 15-HETE (30 microM) caused an elevation of [14C]diacylglycerol (DAG) with a concomitant decrease in cellular [14C]phosphatidylinositol (PI) in both unstimulated and stimulated cells. 1-Oleoyl-2-acetylglycerol, a synthetic DAG analog, stimulated endothelial cell DNA synthesis in a concentration-dependent manner. In [3H]inositol-labeled cells, 15-HETE also caused a decrease in cellular PI content under both basal and stimulated conditions. 15-HETE, however, had no effect on either isolated phospholipase C activity or phosphoinositide turnover in lithium chloride-treated cells. In intact cells, 15-HETE (30 microM) inhibited the synthesis of [3H]PI from [3H]inositol (80% inhibition, p less than 0.001). In human red cell membranes, the production of phosphatidic acid from endogenous DAG was inhibited by 15-HETE in a concentration-dependent manner with an IC50 of 41 microM. Although 12-HETE had effects similar to those of 15-HETE, the parent compound arachidonic acid did not affect DNA synthesis or DAG kinase activity. Our study thus demonstrates that the mitogenic activity of 15- and 12-HETE on endothelial cells may be mediated via DAG kinase inhibition with the concomitant accumulation of cellular DAG.  相似文献   

10.
H De Boeck  R Zidovetzki 《Biochemistry》1989,28(18):7439-7446
The interaction of four diacylglycerols (DAGs) with multilamellar phospholipid bilayers consisting either of dipalmitoylphosphatidylcholine (DPPC) or of a mixture of DPPC and bovine liver phosphatidylcholine (BL-PC) extracts was investigated by a combination of 31P and 2H NMR spectrometry. We found that saturated and unsaturated long-chain DAGs induce different types of perturbations into the bilayer structure. The saturated DAGs dipalmitin and distearin induce lateral phase separation of the lipids into (i) DAG-enriched gellike domains and (ii) relatively DAG-free regions in the liquid-crystalline phase. In the latter regions, the order parameters along the fatty acyl chains of DPPC are practically identical with the control. This phase separation effect was observed in both model systems studied, and its extent is dependent upon DAG concentration and temperature. Only bilayer phases were present upon addition of dipalmitin or distearin at all concentrations and temperatures studied. The unsaturated DAGs diolein and DAG derived from egg PC (egg-DAG) affect PC bilayers in the following two ways: (i) by increasing the order parameters of the side chains, as observed for both DPPC and BL-PC model systems; (ii) by inducing nonbilayer lipid phases, as observed for BL-PC, but not DPPC. At a concentration of 25 mol % of an unsaturated DAG in mixed PC bilayers, a peak corresponding to isotropic lipid conformation appeared and increased in intensity with increase in temperature, while at 32 mol % hexagonal and bilayer phases coexisted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A high level of arachidonic acid release from [2-14C]arachidonylphosphatidylinositol (PI) was observed at neutral pH (6.0-7.0) in the presence of purified plasma membranes of guinea pig peritoneal macrophages. This activity was at least 10-fold higher than that with arachidonylphosphatidylcholine (PC) or phosphatidylethanolamine (PE) as substrate. The accumulation of [14C]diacylglycerol and [14C]phosphatidic acid was not detected at any time, and arachidonic acid release from [14C]arachidonyldiacylglycerol was not detectable either. The data suggest that arachidonic acid release from PI may not occur via the phospholipase C pathway. In this paper, we demonstrate the possibility that arachidonic acid release from PI at neutral pH in the macrophage plasma membrane is dependent on the action of phospholipase A2 (EC 3.1.1.4) -like activity. The maximum arachidonic acid release was dependent upon both pH and substrate. Particularly, the activity of arachidonic acid release from PI at neutral pH was very high compared with that from PC or PE. We suggest that phosphatidylinositol phospholipase A2 (EC 3.1.1.52) may play an important role in providing arachidonic acid for subsequent metabolic activity in the macrophages.  相似文献   

12.
Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism.  相似文献   

13.
The effect of ethanol (ETOH) on the incorporation of [14C]oleic acid (18:1) into lipid in human monocyte-like U937 cells was investigated. With increasing time of exposure to ETOH, the percentage of the label distributed into neutral lipid (NL) declined from 35 per cent (3 h) to 10 per cent (24 h) accompanied by increased incorporation into phospholipid (PL). [14C] 18 : 1 was preferentially incorporated into triglyceride (TG) and phosphatidylcholine (PC), comprising over 65 per cent and 50 per cent of the label associated with NL and PL, respectively. Low concentrations of ETOH (⩽ 1·0 per cent; v/v) had no effect. At concentrations greater than 1·5 per cent, there was enhanced incorporation into TG and diacylglycerol (DAG) in a 24-h incubation period, while at 16 h the label in phosphatidylethanolamine (PE) was decreased. The effect of ETOH on the CDP-choline or ethanolamine pathway was examined by monitoring the incorporation of [3H]choline or [14C]ethanolamine into PC or PE, respectively. At low concentrations ETOH had no effect on either choline uptake or the incorporation into PC. Higher concentrations (≥ 1·5 per cent) for 3 and 6 h resulted in a slightly decreased choline uptake, and the reduction (40–50 per cent) of incorporation into PC suggests that the CDP-choline pathway was inhibited. There was a similar inhibition of the incorporation of [14C]ethanolamine into PE. When the cells were incubated for 3 h in the presence of 2 per cent ETOH and with labelled 18 : 1 and PL-base, the ratios of incorporation (base/18 : 1) into PC and PE fractions decreased, indicating that the major inhibition lay in blockage of the availability of the base moiety for PL formation. Analysis of the distribution of the label into metabolites revealed that ETOH inhibited the conversion of [14C] ethanolamine into [14C]phosphorylethanolamine. The reduction in incorporation was not due to the enhanced breakdown of base-labelled PL. Our results indicate that ETOH has an inhibitory effect on the CDP-choline or ethanolamine pathway.  相似文献   

14.
It is widely accepted that insulin action does not involve inositol phospholipid hydrolysis through the stimulation of a phosphatidylinositol-specific phospholipase C (PI-PLC). This consideration prompted us to investigate the insulin effect on the mechanism leading to the accumulation of diacylglycerol (DAG) and phosphatidic acid (PA) in rat hepatocytes. Basically, insulin induces: (i) a significant increase of both [3H]glycerol and fatty acid labelling of DAG; (ii) a significant increase of PA labelling preceding DAG labelling and paralleled by a decrease of phosphatidylcholine (PC) labelling. These observations, which suggest an insulin-dependent involvement of a phospholipase D, are strengthened by the increase of PC-derived phosphatidylethanol in presence of ethanol. Finally, the observation that the PA levels do not return to basal suggests that other mechanisms different from PC hydrolysis, such as the stimulation of direct synthesis of PA, may be activated.  相似文献   

15.
During entry into the cell cycle a phosphatidylcholine (PC) metabolic cycle is activated. We have examined the hypothesis that PC synthesis during the G(0) to G(1) transition is controlled by one or more lipid products of PC turnover acting directly on the rate-limiting enzyme in the synthesis pathway, CTP: phosphocholine cytidylyltransferase (CCT). The acceleration of PC synthesis was two- to threefold during the first hour after addition of serum to quiescent IIC9 fibroblasts. The rate increased to approximately 15-fold above the basal rate during the second hour. The production of arachidonic acid, diacylglycerol (DAG), and phosphatidic acid (PA) preceded the second, rapid phase of PC synthesis. However, an increase in the cellular content of these lipid mediators was detected only for DAG. CCT activation and translocation to membranes accompanied the second phase of the PC synthesis acceleration. Bromoenol lactone (BEL), an inhibitor of calcium-independent phospholipase A(2) and PA phosphatase, blocked production of fatty acids and DAG, inhibited both phases of the PC synthesis response to serum, and reduced CCT activity and membrane affinity. The effect of BEL on PC synthesis was partially reversed by in situ generation of DAG via exogenous PC-specific phospholipase C to generate approximately 2-fold elevation in PC-derived DAG. Exogenous arachidonic acid also partially reversed the inhibition by BEL, but only at a concentration that generated a supra-physiological cellular content of free fatty acid. 1-Butanol, which blocks PA production, had no effect on DAG generation, or on PC synthesis. We conclude that fatty acids and DAG could contribute to the initial slow phase of the PC synthesis response. DAG is the most likely lipid regulator of CCT activity and the rapid phase of PC synthesis. However, processes other than direct activation of CCT by lipid mediators likely contribute to the highly accelerated phase during entry into the cell cycle.  相似文献   

16.
G A Morrill  A B Kostellow 《Steroids》1999,64(1-2):157-167
Meiosis in the amphibian oocyte is normally initiated by gonadotropins, which stimulate follicle cells to secret progesterone. The progesterone-induced G2/M transition in the amphibian oocyte was the first well-defined example of a steroid effect at the plasma membrane, since it could be shown that exogenous, but not injected, progesterone induced meiosis and that many of the progesterone-induced changes associated with meiosis occurred in enucleated oocytes. We find that [3H]progesterone binding to isolated plasma membranes of Rana pipiens oocytes is saturable, specific and temperature-dependent. Photoaffinity labeling with the synthetic progestin [3H]R5020 followed by gel electrophoresis demonstrated progestin binding to both 80 and 110 kDa proteins in the oocyte cytosol, whereas only the 110 kDa R5020 binding protein was present in the oocyte plasma membrane. We have shown that progesterone acts at Rana oocyte plasma membrane receptors within seconds to release a cascade of lipid messengers. Membrane-receptor binding causes the successive activation of: 1) N-methyltransferases, which convert phosphatidylethanolamine to phosphatidylcholine (PC); 2) an exchange reaction between PC and ceramide to form sphingomyelin (SM) and 1,2-diacylglycerol (DAG); 3) phospholipase D/phosphatidate phosphohydrolase, releasing a second DAG transient; and 4) phosphatidylinositol-specific phospholipase C, generating inositol trisphosphate and a third DAG transient. Within minutes, diglyceride kinase converts newly formed DAG species to phosphatidic acid, turning off the successive DAG signals. A transient fall (0-30 s) in intracellular ceramide is followed (within 1-2 min) by a sustained rise in intracellular ceramide lasting 3-4 h. This ceramide may be significant in later cyclin-dependent steps. We conclude that the initial action of progesterone at its plasma membrane receptor triggers a series of enzyme activations that modify the membrane and release multiple DAG species.  相似文献   

17.
Phosphatidyl inositol 4,5-bisphosphate (PI 4,5-P2) accumulates in a Rac/Rop-dependent manner in the pollen tube tip plasma membrane, where it may control actin organization and membrane traffic. PI 4,5-P2 is hydrolyzed by phospholipase C (PLC) activity to the signaling molecules inositol 1,4,5-trisphosphate and diacyl glycerol (DAG). To investigate PLC activity during tip growth, we cloned Nt PLC3, specifically expressed in tobacco (Nicotiana tabacum) pollen tubes. Recombinant Nt PLC3 displayed Ca2+-dependent PI 4,5-P2-hydrolyzing activity sensitive to U-73122 and to mutations in the active site. Nt PLC3 overexpression, but not that of inactive mutants, inhibited pollen tube growth. Yellow fluorescent protein (YFP) fused to Nt PLC3, or to its EF and C2 domains, accumulated laterally at the pollen tube tip plasma membrane in a pattern complementary to the distribution of PI 4,5-P2. The DAG marker Cys1:YFP displayed a similar intracellular localization as PI 4,5-P2. Blocking endocytic membrane recycling affected the intracellular distribution of DAG but not of PI 4,5-P2. U-73122 at low micromolar concentrations inhibited and partially depolarized pollen tube growth, caused PI 4,5-P2 spreading at the apex, and abolished DAG membrane accumulation. We show that Nt PLC3 is targeted by its EF and C2 domains to the plasma membrane laterally at the pollen tube tip and that it maintains, together with endocytic membrane recycling, an apical domain enriched in PI 4,5-P2 and DAG required for polar cell growth.  相似文献   

18.
ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway. The diacylglycerol (DAG) lipase can convert DAG into 2-arachidonoylglycerol from which free AA can be released by monoacylglycerol (MAG) lipase or fatty acid amidohydrolase (FAAH). We used specific inhibitors to determine the involvement of the PLC pathway in ACh-induced AA release. In rabbit aortic rings precontracted by phenylephrine, ACh induced relaxation in the presence of indomethacin and N(omega)-nitro-L-arginine (L-NNA). These relaxations were blocked by the PLC inhibitor U-73122, DAG lipase inhibitor RHC-80267, and MAG lipase/FAAH inhibitor URB-532. Cultured rabbit aortic ECs were labeled with [14C]AA and stimulated with methacholine (10(-5) M). Free [14C]AA was released by methacholine. Methacholine decreased the [14C]AA content of PI, DAG, and MAG fractions but not PC or PE fractions. Methacholine-induced release of [14C]AA was blocked by U-73122, RHC-80267, and URB-532 but not by U-73343, an inactive analog of U-73122. The data suggested that ACh activates PLC, DAG lipase, and MAG lipase pathway to release AA from membrane lipids. This pathway is important in regulating vasodilatory eicosanoid synthesis and vascular relaxation in rabbit aorta.  相似文献   

19.
The molecular species of 1,2-diacyl-sn-glycerol (DAG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) from brains of adult rats (weighing 150 g) were determined. The DAG, isolated from brain lipid extracts by TLC, was benzoylated, and the molecular species of the purified benzoylated derivatives were separated from each other by reverse-phase HPLC. The total amount and the concentration of each species were quantified by using 1,2-distearoyl-sn-glycerol (18:0-18:0) as an internal standard. About 30 different molecular species containing different fatty acids at the sn-1 and sn-2 positions of DAG were identified in rat brains (1 min postmortem), and the predominant ones were 18:0-20:4 (35%), 16:0-18:1 (15%), 16:0-16:0 (9%), and 16:0-20:4 (8%). The molecular species of PC, PE, PS, and PI were determined by hydrolyzing the lipids with phospholipase C to DAG, which was then benzoylated and subjected to reverse-phase HPLC. PIP and PIP2 were first dephosphorylated to PI with alkaline phosphatase before hydrolysis by phospholipase C. The molecular species composition of phosphoinositides showed predominantly the 18:0-20:4 species (50% in PI and approximately 65% in PIP and PIP2). PS contained mainly the 18:0-22:6 (42%) and 18:0-18:1 (24%) species. PE was mainly composed of the 18:0-20:4 (22%), 18:0-22:6 (18%), 16:0-18:1 (15%), and 18:0-18:1 (15%) species. In PC the main molecular species were 16:0-18:1 (36%), 16:0-16:0 (19%), and 18:0-18:1 (14%). Studies on postmortem brains (30 s to 30 min) showed a rapid increase in the total amount (from 40-50 nmol/g in 0 min to 210-290 nmol/g in 30 min) and in all the molecular species of DAG. Comparatively larger increases (seven- to 10-fold) were found for the 18:0-20:4 and 16:0-20:4 species. Comparison of DAG species with the molecular species of different glycerolipids indicated that the rapid postmortem increase in content of DAG was mainly due to the breakdown of phosphoinositides. However, a slow but continuous breakdown of PC to DAG was also observed.  相似文献   

20.
Abstract

Asymmetric liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP2) predominantly on the inner leaflet of the bilayer were prepared by means of a non-penetrating enzyme, phosphoinositide-specific phospholipase C isolated from adult human platelets. Symmetric liposomes prepared by a modification of the reverse-phase evaporation method were incubated with partially purified enzyme in the presence of Ca2+ at 37°C. The resultant liposomes were collected by high-speed centrifugation. Hydrolysis of PIP2 on the outer leaflet of the membrane was completed after approximately 4 h of incubation. Since PIP2 is predominantly located in the inner leaflet of biological membranes, these asymmetric liposomes should be suitable for investigation of structural and functional roles of PIP2 in biomembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号