首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J-774 murine macrophages were allowed to multiply in the presence of gammairradiated (4.5×106 rads)Mycobacterium avium for 3 days. The macrophages thus stimulated and still containing killed bacteria were then challenged with viableM. avium bacteria, and the intracellular growth of these bacilli was measured during 1 week by lysing the J-774 cells and measuring the viable bacterial counts on 7H10 ager. The results were compared with those obtained in parallel with normal J-774 cells. Our results showed that pretreatment of macrophages with killedM. avium neither enhanced their capacity to check the intracellular growth of viableM. avium nor did it potentiate the intracellular activity of rifampicin, ansamycin and clofazimine against actively multiplyingM. avium.  相似文献   

2.
Mycobacterium avium, a slow‐growing nontuberculous mycobacterium, causes fever, diarrhoea, loss of appetite, and weight loss in immunocompromised people. We have proposed that endoplasmic reticulum (ER) stress‐mediated apoptosis plays a critical role in removing intracellular mycobacteria. In the present study, we investigated the role of the regulated IRE1‐dependent decay (RIDD) pathway in macrophages during M. avium infection based on its role in the regulation of gene expression. The inositol‐requiring enzyme 1 (IRE1)/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase (JNK) signalling pathway was activated in macrophages after infection with M. avium. The expression of RIDD‐associated genes, such as Bloc1s1 and St3gal5, was decreased in M. avium‐infected macrophages. Interestingly, M. avium‐induced apoptosis was significantly suppressed by pretreatment with irestatin (inhibitor of IRE1α) and 4μ8c (RIDD blocker). Macrophages pretreated with N‐acetyl cysteine (NAC) showed decreased levels of reactive oxygen species (ROS), IRE1α, and apoptosis after M. avium infection. The expression of Bloc1s1 and St3gal5 was increased in NAC‐pretreated macrophages following infection with M. avium. Growth of M. avium was significantly increased in irestatin‐, 4μ8c‐, and NAC‐treated macrophages compared with the control. The data indicate that the ROS‐mediated ER stress response induces apoptosis of M. avium‐infected macrophages by activating IRE1α‐RIDD. Thus, activation of IRE1α suppresses the intracellular survival of M. avium in macrophages.  相似文献   

3.
Abstract

We review our recent work on the use of liposomes for the delivery of antiviral agents to human immunodeficiency virus type-1 (HIV-1) infected cells, and antimycobactcrial drugs to cells harboring Mycobacterium avium complex or Mycobacterium tuberculosis. Soluble CD4 has been used to target liposomes to HIV-1-infected cells. Antisense oligodeoxynucleotides have been effectively delivered into HIV-1-infected macrophages using pH-sensitive liposomes. pH-sensitive liposomes with serum stability are being developed as in vivo delivery vehicles. Liposomes encapsulating an HIV-1 protease inhibitor were more effective in inhibiting virus production in infected macrophages than the free drug. Anionic liposomes were found to inhibit HIV-1 infectivity, while cationic liposomes had a differential toxicity for HIV-1-infected macrophages. Lipophilic sulfated cyclodextrins have been synthesized as novel antiviral agents. Liposome-encapsulated ciprofloxacin treatment reduced the number of viable M. avium in macrophages more than the free antibiotic. Liposome-encapsulated paromomycin and sparfloxacin were effective against M. tuberculosis inside macrophages, including multi-drug-resistant strains. Streptomycin encapsulated in liposomes and delivered intravenously or subcutaneously reduced the number of viable M. tuberculosis in infected mice and prevented mortality.  相似文献   

4.
Mycobacterium avium complex (MAC), the most frequent cause of opportunistic nontuberculous pulmonary infection, is made up of a group of intracellular pathogens that are able to survive and multiply inside lung alveolar macrophages. As nebulized liposomes are reported to be effective to target antibacterial agents to macrophages, in this work we have prepared and characterized re-dispersible freeze-dried rifampicin (RFP)-loaded vesicles by using soy lecithin (SL) and a commercial, enriched mixture of soy phosphatidylcholine (Phospholipon 90, P90) with or without cholesterol. The obtained results showed that RFP could be loaded stably in SL vesicles only when cholesterol was not present in the film preparation, whereas with P90 vesicles, the highest stability was obtained with formulations prepared with P90/cholesterol 7:1 or 4:1 molar ratios. RFP-liposome aerosols were generated using an efficient high-output continuous-flow nebulizer, driven by a compressor. After the experiments, nebulization efficiency (NE%) and nebulization efficiency of the encapsulated drug (NEED%) were evaluated. The results of our study indicated that nebulization properties and viscosity of formulations prepared with the low-transition-temperature phospholipids, SL and P90, are affected by vesicle composition. However, all formulations showed a good stability during nebulization and they were able to retain more than 65% of the incorporated drug. The effect of liposome encapsulation on lung levels of RFP following aerosol inhalation was determined in rats. The in vitro intracellular activity of RFP-loaded liposomes against MAC residing in macrophage-like J774 cells was also evaluated. Results indicated that liposomes are able to inhibit the growth of MAC in infected macrophages and to reach the lower airways in rats.  相似文献   

5.
Exosomes are small 30–100 nm membrane vesicles released from hematopoietic and nonhematopoietic cells and function to promote intercellular communication. They are generated through fusion of multivesicular bodies with the plasma membrane and release of interluminal vesicles. Previous studies from our laboratory demonstrated that macrophages infected with Mycobacterium release exosomes that promote activation of both innate and acquired immune responses; however, the components present in exosomes inducing these host responses were not defined. This study used LC‐MS/MS to identify 41 mycobacterial proteins present in exosomes released from M. tuberculosis‐infected J774 cells. Many of these proteins have been characterized as highly immunogenic. Further, since most of the mycobacterial proteins identified are actively secreted, we hypothesized that macrophages treated with M. tuberculosis culture filtrate proteins (CFPs) would release exosomes containing mycobacterial proteins. We found 29 M. tuberculosis proteins in exosomes released from CFP‐treated J774 cells, the majority of which were also present in exosomes isolated from M. tuberculosis‐infected cells. The exosomes from CFP‐treated J774 cells could promote macrophage and dendritic cell activation as well as activation of naïve T cells in vivo. These results suggest that exosomes containing M. tuberculosis antigens may be alternative approach to developing a tuberculosis vaccine.  相似文献   

6.
Hsp70 plays an important role in cytoprotection against tumor necrosis factor (TNF) α-mediated cytotoxicity. To investigate the role of Hsp70 in cytoprotein during Salmonella infection, we examined endogenous Hsp70 induction and TNF-α production in a monocyte/macrophage line, J774A.1, after infection with a virulent strain of Salm.choleraesuis RF-1 carrying a 50 kb virulent plasmid or the plasmid-cured avirulent strain 31N-1. Intracellular bacteria progressively increased in J774A.1 cells phagocytosing avirulent 31N-1 bacteria, whereas such progressive growth was not evident in J774A.1 cells phagocytosing avirulent 31N-1 bacteria. On the contrary, J774A.1 cells infected with virulent RF-1 bacteria expressed less Hsp70 than those infected with avirulent 31N-1 bacteria. The level of TNF-α production by J774A.1 infected with virulent RF-1 was much the same as that by J774A.1 infected with avirulent 31N-1. J774A.1 infected with virulent RF-1 died spontaneously; death was inhibited by the addition of anti-TNF-α mAb. Although the frequency of dead J774A.1 with hypodiploid DNA content increased only marginally after infection with avirulent 31N-1, treatment with Hsp70 anti-sense oligonucleotide resulted in a dramatic increase of dead cells in the infected macrophages. Taken together, these results suggest that Hsp70 induced macrophages plays an important role in host defense against Salmonella infection by protecting the macrophages against TNF α-induced cell death. Furthermore, cell death due to impaired endogenous Hsp synthesis in the phagocytes implies a novel pathogenic mechanism for virulence of Salm. choleraesuis RF-1.  相似文献   

7.
A comparative study was done using J774A.1 and J774A. 1-derived transfected cells (J774A.1 C.1) containing antisense tumor necrosis factor α (TNF-α) plasmid to determine the role of endogenous TNF-α on nitric oxide production as well as on the growth ofMycobacterium microti in interferon γ (IFN-γ)- and lipopolysaccharide (LPS)-treated cells. On stimulation with IFN-γ and LPS a higher level of NO was observed in J774A.1 cells compared to J774A.1 C.1 which indicated that endogenous TNF-α is required for the production of NO. Comparing the effect of IFN-γ and LPS on the intracellular growth ofM. microti, the growth-reducing activity was higher in J774A.1 cells than in J774A.1 C.1 cells and was not completely abrogated in the presence of the nitric oxide inhibitorN G-methyl-l-arginine (l-NMA). J774A.1 C.1 cells infected withM. microti produced a significant amount of NO when exogenous TNF-α was added along with IFN-γ and LPS and the concentration of intracellular bacteria decreased almost to that in IFN-γ and LPS treated parental J774A.1 cells. Addition of exogenous TNF-α even in the presence ofl-NMA in J774.1 C.1 cells could also partially restore intracellular growth inhibition ofM. microti caused by IFN-γ and LPS. TNF-α is probably required for the production of NO in J774A.1 cells by IFN-γ and LPS but TNF-α and NO are independently involved in the killing of intracellularM. microti with IFN-γ and LPS.  相似文献   

8.
Interactions of Aeromonas caviae, Aeromonas veronii biotype sobria, and Aeromonas hydrophila strains isolated from fecal specimens of humans with gastroenteritis on murine macrophages, J774 cells, were investigated. Analyses of cellular morphology and DNA fragmentation in phagocytes infected with these strains exhibited typical characteristic features of cells undergoing apoptosis. We observed the morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane, and fragmentation of nuclear DNA into oligonucleosomal fragments. The lowest apoptotic index did not exceed 25%, whereas the highest reached 78% at 24 h and 96% at 48 h after infection. After incubation of J774 cells with cytotoxic enterotoxin isolated from A. veronii biotype sobria strain, we noted that the toxin was able to trigger cytotoxicity and apoptosis of macrophages. The results indicate that apoptosis could be one of the mechanisms contributing to the development of Aeromonas-associated diarrheal disease.  相似文献   

9.
Macrophages represent the first line of defense against invading Mycobacterium tuberculosis (Mtb). In order to enhance intracellular survival, Mtb targets various components of the host signaling pathways to limit macrophage functions. The outcome of Mtb infection depends on various factors derived from both host and pathogen. A detailed understanding of such factors operating during interaction of the pathogen with the host is a prerequisite for designing new approaches for combating mycobacterial infections. This work analyzed the role of host phospholipase C-γ1 (PLC-γ1) in regulating mycobacterial uptake and killing by J774A.1 murine macrophages. Small interfering RNA mediated knockdown of PLC-γ1 increased internalization and reduced the intracellular survival of both Mtb and Mycobacterium smegmatis (MS) by macrophages. Down-regulation of the host PLC-γ1 was observed during the course of mycobacterial infection within these macrophages. Finally, Mtb infection also suppressed the expression of pro-inflammatory cytokine tumor necrosis factor-α and chemokine (C-C motif) ligand 5 (RANTES) which was restored by knocking down PLC-γ1 in J774A.1 cells. These observations suggest a role of host PLC-γ1 in the uptake and killing of mycobacteria by murine macrophages.  相似文献   

10.
Abstract The effect of mouse recombinant interleukin-1 α on the intracellular growth of Mycobacterium microti in a murine macrophage cell line J774A.1 was investigated. Interleukin-1 α added after infection to the M. microti -infected macrophage monolayers enhanced the growth of M. microti in a concentration-dependent manner and this growth enhancement was abrogated by neutralization of interleukin-1 α with anti-interleukin-1 α antibody. Cyclic adenosine monophosphate level in J774A.1 cells was increased by the addition of interleukin-1 α . Addition of dibutyryl cyclic adenosine monophosphate to infected J774A.1 cells increased the number of intracellular bacteria in a concentration-dependent manner. These results suggest that interleukin-1 α acts as a growth enhancer for intracellular M. microti and the growth enhancing effect of interleukin-1 α may be due to enhanced cellular cyclic adenosine monophosphate level.  相似文献   

11.
The phagosomes containing viable pathogenic mycobacteria, such as Mycobacterium ( M .) tuberculosis and Mycobacterium avium ssp. avium ( M. avium ), are known to be limited in their ability to both acidify and fuse with late (but not early) endocytic organelles. Here, we analysed the pH and fusogenicity of phagosomes containing M. avium ssp. paratuberculosis ( M. ptb ), the causative agent of paratuberculosis in ruminants. Using the murine J774 macrophage cell line, we compared viable and heat-killed M. ptb and, in addition, viable or dead M. avium , as well as two non-pathogenic mycobacteria, Mycobacterium smegmatis and Mycobacterium gordonae . Electron microscopic analysis revealed that M. ptb persisted intracellularly in phagosomes for up to 15 days. The phagosomes containing live M. ptb and M. avium were significantly reduced in their ability to acquire some markers for the endocytic pathway, such as internalized calcein, BSA–gold or the membrane protein Lamp 2. However, they were almost completely accessible to 70 kDa fluorescein isothiocyanate (FITC)–dextran and Lamp 1. Overall, the phagosomes containing dead pathogenic mycobacteria behaved similarly to the ones containing live non-pathogenic mycobacteria in all experiments. Using FITC–dextran in a novel fluorescence-activated cell sorting (FACS)-based method, we could also show that the bulk of endocytic compartments, including phagosomes, were only very mildly acidified to ≈ pH 6.3 over at least 72 h in J774 cells infected with live M. ptb and M. avium . In contrast, J774 cells treated with heat-killed M. ptb or BSA-coated latex beads showed substantial acidification of the phagosome/endocytic compartments to a pH value of ≈ 5.2. After infection with M. smegmatis and M. gordonae , acidification was initially (1–5 h after infection) inhibited, but increased after longer infection to levels similar to those with dead mycobacteria.  相似文献   

12.
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC50) were 22.5 (±0.60) and 12.5 (±0.26) μg/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 μg/mL, respectively. The MBC of UA-LIPO was twice as low (16 μg/mL) as that of UA (32 μg/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 × 104 ± 28.3 × 102 c.p.s), in comparison with UA (9.5 × 104 ± 11.4 × 102 c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.  相似文献   

13.
Abstract

Liposomes in the 200 nm size range were prepared from the ether lipids extracted from various Archaeobacteria (coined archaeosomes), and from conventional lipids. The entrapment of peroxidase or carboxyfluorescein was used to compare the in vitro uptake of various liposomes by murine peritoneal macrophages, J774A.1 macrophages and several non phagocytic cell lines. While liposomes composed of ester lipids dipalmitoylphosphatidylcholine, or dimyristoylphosphatidylcholine: dimyristoylphosphatidylglycerol: cholesterol (1.8:0.2:1.5, molar ratio) were taken up by macrophage species, the uptake of archaeosomes was 3 to 53 times greater. Uptake by non phagocytic HEp-2, HeLa, and EJ/28 cells was considerably less. Evidence from time-course studies using cytochalasins B+D, sub-optimal temperature or formaldehyde treatments of macrophages, indicated that the archaeosomes lost structural integrity following internalization within the J774A. 1 phagocytic cells. No cytotoxicity was observed in viability or growth assays with J774A. 1 cells, using high doses of three representative types of archaeosomes and one type of conventional-liposome. Therefore, archaeosomes may be well suited to applications where phagocytic cells are a target site.  相似文献   

14.
15.
Mutual interactions were investigated between intracellular parasitic bacterium Francisella tularensis (F.t.; highly virulent bacterium responsible for tularemia, replicating within the host macrophages) and murine macrophage-like cell line J774. Recombinant murine lymphokine INF-γ and/or LPS derived from E. coli were determined to stimulate in vitro antimicrobial activity of macrophage-like J774 cell line against the live vaccine strain (LVS) of F.t. through their ability to produce proinflammatory cytokines and chemokines. F.t. infection up-regulated IL-12 p40 production and down-regulated TNF-α production by stimulated macrophages; on the other hand, F.t. infection did not affect the production of IL-8, IL-6, MCP-5, and RANTES by stimulated macrophages. This showed that F.t. infection modulates the cytokine synthesis by J774 macrophage cell line.  相似文献   

16.
Macrophages act as a reservoir for Mycobacterium tuberculosis, producing latent infection in approximately 90% of infected people. In this study, J774A.1 mouse macrophage cell line response and microRNA (miRNA) expression during infection with the most relevant mycobacterial strains for humans (M. tuberculosis, M. bovis and M. bovis BCG) was explored. No significant differences in bacillary loads were observed between activate and naive macrophages infected with M. tuberculosis and M. bovis. Nitrite production inhibition and infection control were in accordance with the virulence of the strain. Expression of let‐7e, miR‐21, miR‐155, miR‐210 and miR‐223 was opposite in the two species and miR‐146b* and miR‐1224 expression seemed to be part of the general response to infection.  相似文献   

17.

Background  

Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a facultative intracellular pathogen that resides within host macrophages during infection of ruminant animals. We examined survival of M. paratuberculosis infections within cultured macrophages to better understand the interplay between bacterium and host.  相似文献   

18.
Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.  相似文献   

19.
Nucleotide-binding oligomerization domain-2 (NOD2) is an innate immune receptor that recognizes peptidoglycan-derived muramyl dipeptide from intracellular bacteria and triggers proinflammatory signals. In this study, we sought to evaluate the role played by this receptor during early and late stages of infection with Mycobacterium avium in mice. We demonstrated that NOD2 knockout (KO) animals were able to control M. avium infection similarly to wild-type mice at all time points studied, even though IL-12 and TNF-α production was impaired in NOD2-deficient macrophages. At 100 days following infection with this bacterium, but not at 30 days post-infection, NOD2-deficient mice showed significantly diminished production of IFN-γ, as confirmed by reduced accumulation of IFN-γ and IL-12 mRNA in the spleens of KO mice. Additionally, a reduction in the size and in the number of lymphocytes/granulocytes of hepatic granulomas from NOD2 KO animals was observed only during late time points of M. avium infection. Taken together, these data demonstrate that NOD2 regulates type-1 cytokine responses to M. avium but is not required for the control of infection with this bacterium in vivo.  相似文献   

20.
Mycobacterium avium is a facultative intracellular opportunistic pathogen especially relevant in cases of people living with AIDS. The aim of this study was to evaluate the role of intercellular adhesion molecule 1 (ICAM-1) in the inflammatory response against M. avium infection. Mice deficient for ICAM-1 (ICAM KO) and infected with M. avium presented increased bacterial load in the spleen, liver and lungs compared to C57BL/6. Moreover, ICAM deficient mice presented reduced granuloma area in liver at 30 days post-infection with reduced numbers of lymphocytes and granulocytes. The assessment of in vitro cytokine production by ICAM KO spleen cells showed lower levels of IFN-γ compared to C57BL/6, whereas TNF-α remained unaltered. Additionally, the production of IFN-γ in liver and spleen tissues was also diminished in ICAM-1 KO mice. Interestingly, a persistent reduction in IFN-γ production was observed in CD3+NK1.1+ cells of ICAM-1 deficient mice compared to wild-type animals. Together, these results demonstrate the importance of ICAM-1 in the efficient control of M. avium infection and granuloma formation and highlights its role on CD3+NK1.1+ cell population as important for IFN-γ production during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号