首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A meeting of somatosensory and developmental biologists was held on November 10 and 11, 1995, in San Diego, California, to consider recent findings pertaining to the somatosensory system. The focus of this, the eighth annual Barrels Symposium (Barrels VIII), was on somatosensory circuits and plasticity, and the development of somatosensory primary afferent projections and barrel-like aggregates in the brainstem, thalamus, and cortex  相似文献   

2.
Distribution maps of cortical potentials evoked by mechanical stimulation of different number of contralateral vibrissae were studied. It was found that stimulation of all the contralateral vibrissae led to more extensive activation than the barrel field in the somatosensory cortex. The activation was most widespread when all the vibrissae were synchronously deflected. With reduction of the number of synchronously stimulated whiskers the activated cortical area did not decrease in parallel. Deflection of only a few whiskers activated significantly smaller cortical areas.  相似文献   

3.
Neuronal responses of the rat somatosensory cortex grafted into damaged host barrel field to electrical stimulation of the host brain were investigated extracellularly in rats under light pentobarbital anaesthesia. The following structures of the host brain were stimulated: ventrobasal complex and posterior thalamic nuclei, ipsilateral area of vibrissae representation in the sensorimotor cortex and contralateral barrel field. Reactivity of the grafted neurones was lower, than in the intact barrel field, but the mean latencies of responses were not significantly different. Stimulation of the thalamic nuclei was more effective than that of the cortical areas both in grafted and intact barrel fields. Posttetanic depression after repetitive stimulation was often observed in the grafts, while posttetanic potentiation was more usual for the intact barrel field. The data show the sources of some functional afferent inputs to the grafts which may be responsible for neuronal reactions to somatosensory stimulation of the host animal.  相似文献   

4.
Integration of information by convergence of inputs onto sensory cortical neurons is a requisite for processing higher-order stimulus features. Convergence across defined peripheral input classes has generally been thought to occur at levels beyond the primary sensory cortex, however recent work has shown that this does not hold for the convergence of slowly-adapting and rapidly-adapting inputs in primary somatosensory cortex. We have used a new analysis method for multi-unit recordings, to show convergence of inputs deriving from the rapidly-adapting and Pacinian channels in a proportion of neurons in both primary and secondary somatosensory cortex in the anaesthetised cat. We have validated this method using single-unit recordings. The secondary somatosensory cortex has a greater proportion of sites that show convergence of this type than primary somatosensory cortex. These findings support the hypothesis that the more complex features processed in higher cortical areas require a greater degree of convergence across input classes, but also shows that this convergence is apparent in the primary somatosensory cortex.  相似文献   

5.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

6.
The 20th annual Barrels meeting brought together researchers who utilize behavioral, physiological, anatomical, and molecular techniques to understand the structure and function of the barrel system. Barrels XX featured talks on the role inhibition has in shaping cortical responses within the barrel system, the molecular cues that influence the development of the whisker-to-barrel system, and the synaptic plasticity that can shape responses within the system. The meeting highlighted why the whisker-to-barrel system is an ideal model to investigate the development of cortical circuitry and how its functioning can influence behavioral responses.  相似文献   

7.
The 20th annual Barrels meeting brought together researchers who utilize behavioral, physiological, anatomical, and molecular techniques to understand the structure and function of the barrel system. Barrels XX featured talks on the role inhibition has in shaping cortical responses within the barrel system, the molecular cues that influence the development of the whisker-to-barrel system, and the synaptic plasticity that can shape responses within the system. The meeting highlighted why the whisker-to-barrel system is an ideal model to investigate the development of cortical circuitry and how its functioning can influence behavioral responses.  相似文献   

8.
Competitive interactions between left and right eye inputs to visual cortex during development are usually explained by the thalamocortical axons competing more or less well for cortical territory during retraction into eye specific domains. Here we review the evidence for competitive and co-operative interactions between cortical columns in barrel cortex which are present several weeks after retraction of thalamocortical axons into barrels. Sensory responses in barrel cortex can be altered by a period of vibrissa deprivation. It was found that responses to previously deprived vibrissae (that had been allowed to regrow) were depressed more if neighboring vibrissae were spared than if all vibrissae were removed simultaneously. Depression of the deprived vibrissa response was greater the closer the cell lay to a spared barrel. It was also found that spared vibrissae responses were potentiated more if several neighboring vibrissae were left intact than if only a single vibrissae was spared. These results suggest a mechanism of cooperative potentiation, perhaps due to intracortical summation of excitation evoked by neighbouring vibrissa stimulation. Thalamic responses to vibrissa stimulation were unaffected by deprivation indicating a cortical origin. One of the consequences of deprivation was that the speed of transmission between barrels was increased for spared and decreased for deprived vibrissa. These results imply that inherent interactions between cortical columns give rise to a property of competition and co-operativity which amplify the effects of sensory deprivation.  相似文献   

9.
Andermann ML  Ritt J  Neimark MA  Moore CI 《Neuron》2004,42(3):451-463
The array of vibrissae on a rat's face is the first stage of a high-resolution tactile sensing system. Recently, it was discovered that vibrissae (whiskers) resonate when stimulated at specific frequencies, generating several-fold increases in motion amplitude. We investigated the neural correlates of vibrissa resonance in trigeminal ganglion and primary somatosensory cortex (SI) neurons (regular and fast spiking units) by presenting low-amplitude, high-frequency vibrissa stimulation. We found that somatosensory neurons showed band-pass tuning and enhanced sensitivity to small amplitude stimuli, reflecting the resonance amplification of vibrissa motion. Further, a putative somatotopic map of frequency selectivity was observed in SI, with isofrequency columns extending along the representations of arcs of vibrissae, in agreement with the gradient in vibrissa resonance across the vibrissa pad. These findings suggest several parallels between frequency processing in the vibrissa system and the auditory system and have important implications for detection and discrimination of tactile information.  相似文献   

10.
GABAA receptors are heteromeric, ligand-gated ion channels, built up with 19 different subunits. In the somatosensory cortex the most prevalent subunits are: alpha1, beta2 and gamma2. We showed that classical conditioning, in which stimulation of a row of vibrissae (CS) was paired with a tail shock (UCS), results in changes in cortical inhibitory system. Among others, GABAAalpha1 mRNA is up-regulated in layer IV of cortical representation of trained row of vibrissae. We examined the mRNA expression level of beta2 and gamma2 subunits of GABAAR. For in situ hybridization, 35S-labeled oligonucleotides were used as antisense probes. The effects were examined 1 h, 24 h and 5 days after the training lasting 3 days. There are no changes observed in beta2 subunits mRNA level. Expression of mRNA of gamma2 subunits increased 5 days after the training, but in contrast to other elements of gabaergic system we investigated, the change was observed in layers II/III. This indicates that learning-dependent regulation of GABAA receptor phenotype is specific for given neuronal subtype.  相似文献   

11.
12.
GABAA receptors are heteromeric, ligand‐gated ion channels, built up with 19 different subunits. In the somatosensory cortex the most prevalent subunits are: alpha1, beta2 and gamma2. We showed that classical conditioning, in which stimulation of a row of vibrissae (CS) was paired with a tail shock (UCS), results in changes in cortical inhibitory system. Among others, GABAAalpha1 mRNA is up‐regulated in layer IV of cortical representation of trained row of vibrissae. We examined the mRNA expression level of beta2 and gamma2 subunits of GABAAR. For in situ hybridization, 35S‐labeled oligonucleotides were used as antisense probes. The effects were examined 1 h, 24 h and 5 days after the training lasting 3 days. There are no changes observed in beta2 subunits mRNA level. Expression of mRNA of gamma2 subunits increased 5 days after the training, but in contrast to other elements of gabaergic system we investigated, the change was observed in layers II/III. This indicates that learning‐dependent regulation of GABAA receptor phenotype is specific for given neuronal subtype.  相似文献   

13.
Recent anatomical, physiological, and neuroimaging findings indicate multisensory convergence at early, putatively unisensory stages of cortical processing. The objective of this study was to confirm somatosensory-auditory interaction in A1 and to define both its physiological mechanisms and its consequences for auditory information processing. Laminar current source density and multiunit activity sampled during multielectrode penetrations of primary auditory area A1 in awake macaques revealed clear somatosensory-auditory interactions, with a novel mechanism: somatosensory inputs appear to reset the phase of ongoing neuronal oscillations, so that accompanying auditory inputs arrive during an ideal, high-excitability phase, and produce amplified neuronal responses. In contrast, responses to auditory inputs arriving during the opposing low-excitability phase tend to be suppressed. Our findings underscore the instrumental role of neuronal oscillations in cortical operations. The timing and laminar profile of the multisensory interactions in A1 indicate that nonspecific thalamic systems may play a key role in the effect.  相似文献   

14.
15.
Multisensory integration was once thought to be the domain of brain areas high in the cortical hierarchy, with early sensory cortical fields devoted to unisensory processing of inputs from their given set of sensory receptors. More recently, a wealth of evidence documenting visual and somatosensory responses in auditory cortex, even as early as the primary fields, has changed this view of cortical processing. These multisensory inputs may serve to enhance responses to sounds that are accompanied by other sensory cues, effectively making them easier to hear, but may also act more selectively to shape the receptive field properties of auditory cortical neurons to the location or identity of these events. We discuss the new, converging evidence that multiplexing of neural signals may play a key role in informatively encoding and integrating signals in auditory cortex across multiple sensory modalities. We highlight some of the many open research questions that exist about the neural mechanisms that give rise to multisensory integration in auditory cortex, which should be addressed in future experimental and theoretical studies.  相似文献   

16.
Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states – mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.  相似文献   

17.
Somatosensory evoked potentials were elicited in anesthetized rats by electrical stimulation of the forepaw (F-SEP) or the vibrissae (V-SEP) and were compared in order to study which of these is more valid animal model for studying the physiology and pathophysiology of somatosensory evoked potentials (SEPs) that are often recorded in man in a clinical setting. Intensity and rate functions were measured for the two potentials. The V-SEPs had larger amplitudes than the F-SEPs at high stimulus intensity and low stimulus rate. Furthermore, the ratios of the maximal amplitude of the F-SEP to that of the V-SEP (0.66) and of the areas under the curves of the two responses (0.75) reflected the smaller representation of the forepaw in the primary somatosensory cortex of the rat, compared to the vibrissae (ratio of cortical areas about 0.79). The differences should be taken into account when using median nerve SEP in the rat as a model of the human SEP. Study of V-SEPs in rat may provide insight into trigeminal nerve SEPs in man, which are also occasionally used for neurological evaluation.  相似文献   

18.
The Barrels meeting annually brings together researchers focused on the rodent whisker to cortical barrel system prior to the Society for Neuroscience meeting. The 2017 meeting focused on the classification of cortical interneurons, the role interneurons have in shaping brain dynamics, and finally on the circuitry underlying oral sensations. The meeting highlighted the latest advancements in this rapidly advancing field.  相似文献   

19.
The barrelfield of the adult rats was removed by suction and embryonic tissue of the somatosensory neocortex was transplanted into the cavity. Spontaneous and evoked activity of the grafted neurones was investigated extracellularly 2-3 months after the grafting. The light microscopy of the grafts revealed the presence of normal neuronal cells, but their distribution was diffuse, and they were not organized into barrels as in intact neocortex. The background activity of grafted neurones depended upon the level of the recipient's anaesthesia. The response types of the grafted neurones to vibrissae deflection and to tactile stimulation of the host body surfaces, their latencies and lability did not differ from such of the intact somatosensory cortex, but the receptive fields of the grafted neurones were larger. There was also substantial convergence of inputs from other surfaces upon the grafted neurones. The effectiveness of stimulation of the various skin areas was determined by the proximity of their neocortical representations to the graft.  相似文献   

20.
The aim of this study was to investigate the role of inhibitory processes in S-1 cortex of cats. The inhibition was evoked by "natural" afferent stimulation of the fascial vibrissae. For this purpose, two neighboring vibrissae were sequentially stimulated by mechanical deflection; single unit activity was recorded simultaneously from the cortex. Results showed that conditioning by afferent stimulation significantly influenced the directional sensitivity of cortical neurons. These data and analysis of spatial pattern of stimulated vibrissa indicate that detector neurons could be quickly modified during sensory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号