首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

2.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

3.
Membrane fusion under mildly acidic pH occurs naturally during viral infection in cells and has been exploited in the field of nanoparticle-mediated drug delivery to circumvent endosomal entrapment of the cargo. Herein, we aimed to confer virus-like fusogenic activity to HDL in the form of a ca. 10-nm disc comprising a discoidal lipid bilayer and two copies of a lipid-binding protein at the edge. A series of HDL mutants were prepared with a mixture of three lipids and a cell-penetrating peptide (TAT, penetratin, or Arg8) fused to the protein. In a lipid-mixing assay with anionic liposomes at pH 5.5, one HDL mutant showed the fusogenic activity higher than known fusogenic liposomes. In live mammalian cells, this HDL mutant showed high plasma membrane-binding activity in the presence of serum independent of pH. In the absence of serum, a mildly acidic pH dependency for binding to the plasma membrane and the subsequent lipid mixing between them was observed for this mutant. We propose a novel strategy to develop HDL-based drug carriers by taking advantage of the HDL lipid/protein composite structure.  相似文献   

4.
Abstract

pH sensitive liposomes are lipid compositions that can be destabilized when the external pH is changed; usually from a neutral or slightly alkaline pH to an acidic pH. They are designed to circumvent delivery of liposome contents to the lysosomes of cells following internalization of the vesicle via the endocytic pathway. In the majority of compositions, a lipid containing a pH titratable group is mixed with phosphatidylethanolamine containing unsaturated acyl chains in a molar ratio (pH sensitive component/PE) of 1/4 or greater. There are five major groups of phosphatidylethanolamine containing pH-senstive lipid compositions. These can be classified by their acid-titratable component: phospholipids, acylated amino acids, fatty acids, cholesterol derivatives and miscellaneous double chain amphiphiles. The biophysical mechanism of action involves a transition of the lipids from the lamellar phase to the hexagonal phase. In cell culture, pH sensitive vesicles can increase the delivery of fluorescent markers, proteins, cytotoxic compounds, RNA and DNA into the cytoplasm. The mechanism of delivery is suggested to involve the destabilization of the liposome in the endosome as the pH is reduced from 7.4 to 5.0 and subsequent destabilization of, or fusion with, the endosomal membrane; some of the liposome contents are introduced into the cytoplasm. In most cases, the extent of liposome contents delivery into the cytoplasm is less than 1% of the amount that becomes cell associated. However further studies, with more reliable assays to differentiate cytoplasmic from lysosomal delivery, are required to place an exact value on this efficiency. The efficiency of pH sensitive liposomes in vivo is limited by stability of certain of the liposome compositions in serum and targeting to the appropriate cell. Cholesterol hemisuccinate is a particularly attractive component for in vivo use since it stabilizes the liposome when in serum at pH 7.4. The use of pH sensitive liposomes in drug delivery should continue to expand due to the increasing number of macromolecular therapeutic agents with intracellular targets.  相似文献   

5.
Abstract

Avoidance of lysosomal degradation of drugs entrapped in liposomes has been one of the major efforts in liposome research. The achievement of high drug deliver}' efficiency using pH-sensitive liposomes over the pH-insensitive liposomes has greatly influenced our strategies in liposome drug delivery. The success of pH-sensitive liposomes in delivering compounds such as fluorescence dye, anti-cancer reagents, toxins and DNA to target cells with high efficiency in vitro shows a great potential to apply the same strategy to in vivo systems. Using human plasma as a simplified model for blood, we have systematically examined the interaction of pH-sensitive liposomes composed of dioleoylphosphatidyl-ethanolamine (DOPE) and oleic acid (OA) with plasma components. Our results show that the bilayer structure of liposomes in plasma depends on their sizes. Small liposomes (d<200nm) were stabilized by plasma components while the larger ones (d>600nm) were rapidly lysed upon the exposure to plasma. Such differences in their stability in plasma may derive from their differences in lipid packing which determines the surface pressure of the membrane. Using purified serum proteins, we found that albumin such as bovine serum albumin (BSA) lyse liposomes by extracting OA from the bilayer. However, BSA induced lysis could be blocked by lipoproteins including HDL, LDL and VLDL, but not by immunoglobulins. Further studies with purified components of HDL demonstrated that apoAl, not the lipids of the HDL, contains the stabilization activity. The extraction of OA from liposomes and the insertion of plasma components into the bilayer modified the bilayer properties such that plasma stabilized liposomes were no longer pH sensitive. Using dipalmitoylsuccinylglycerol (DPSG), a double-chain pH senser for DOPE liposomes, we could preserve 50% pH sensitivity after plasma treatment. The potential application of such liposomes and other essential properties of pH-sensitive liposomes for drug delivery in vivo are also discussed.  相似文献   

6.
The application of conventional cationic liposomes/DNA complexes in gene transfer was hampered due to their large size, instability, and limited transfection site in vivo. In this report, we described a dialysis-based method and produced small, stable, and negatively charged DNA-containing liposomes composed of low content of cationic lipid and high content of fusogenic lipid. The liposomes were relatively spherical with a condensed core inside, and exhibited small size with narrow particle size distribution. The encapsulation efficiency of the liposomes was 42.53 +/- 2.29%. They were stable and showed enough protective ability to plasmid DNA from degradation after incubation with different amounts of DNase. Twenty-fold higher transfection efficiency for the liposomes was achieved when compared with that of naked plasmid DNA and no toxicities to hepatocellular carcinoma cells were observed. Our results indicate that the negatively charged DNA-containing liposomes can facilitate gene transfer in cultured cells, and may alleviate the drawbacks of the conventional cationic liposomes/DNA complexes for gene delivery in vivo.  相似文献   

7.
Abstract

Target-sensitive liposomes are liposomes which spontaneously destablize when they come into contact with target membrane/surface. The principle lipid in the liposomes ingredient is dioleoyl phosphatidylethanolamine (DOPE) which readily forms inverted micelle at physiological conditions. Earlier design of the liposomes uses acylated antibody as both a bilayer stabilizer and a targeting ligand. Although the immunoliposomes specifically release then-contents upon binding with the target membrane, they are not stable enough for long-term storage. Recent improvement in the design uses a charged phospholipid as a bilayer stabilizer and uses acylated antibody or other ligands at a much lower concentration. The new liposomes are stable for long-term storage, yet still destablize when bound with a target membrane. The rate of destabilization is significantly enhanced at elevated temperatures. The physical and biological properties of these liposomes are reviewed in this paper.  相似文献   

8.
Liposome mediated gene transfer   总被引:4,自引:0,他引:4  
Liposomes, artificial membrane vesicles, are being intensively studied for their usefulness as delivery vehicles in vitro and in vivo. Substantial progress has been made in the development of procedures for liposome preparation, targeting and delivery of contents. The broad flexibility now available in the design of the structure and composition of liposomes, coupled to recent reports of liposome mediated gene transfer in animals, suggest that liposome technology is now poised to be utilized in the creation of custom-designed cell-type-specific gene transfer vehicles.  相似文献   

9.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody–antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand–receptor recognition mechanism for targeted modification of c‐KIT receptor‐expressing cells. For targeting, we incorporate membrane‐bound human stem cell factor (hSCF), and for fusion, a Sindbis virus‐derived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in an SCF‐receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell‐specific surface receptors. Development of a high titer lentivector to receptor‐specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non‐target cells. Biotechnol. Bioeng. 2009; 104: 206–215 © 2009 Wiley Periodicals, Inc.  相似文献   

10.
We have previously described a lipopolyplex formulation comprising a mixture of a cationic peptide with an integrin-targeting motif (K16GACRRETAWACG) and Lipofectin®, a liposome consisting of DOTMA and DOPE in a 1:1 ratio. The high transfection efficiency of the mixture involved a synergistic interaction between the lipid/peptide components. The aim of this study was to substitute the lipid component of the lipopolyplex to optimize transfection further and to seek information on the structure-activity relationship of the lipids in the lipopolyplex. Symmetrical cationic lipids with diether linkages that varied in alkyl chain length were formulated into liposomes and then incorporated into a lipopolyplex by mixing with an integrin-targeting peptide and plasmid DNA. Luciferase transfections were performed of airway epithelial cells and fibroblasts in vitro and murine lung airways in vivo. The biophysical properties of lipid structures and liposome formulations and their potential effects on bilayer membrane fluidity were determined by differential scanning calorimetry and calcein-release assays. Shortening the alkyl tail from C18 to C16 or C14 enhanced lipopolyplex and lipoplex transfection in vitro but with differing effects. The addition of DOPE enhanced transfection when formulated into liposomes with saturated lipids but was more variable in its effects with unsaturated lipids. A substantial improvement in transfection efficacy was seen in murine lung transfection with unsaturated lipids with 16 carbon alkyl tails. The optimal liposome components of lipopolyplex and lipoplex vary and represent a likely compromise between their differing structural and functional requirements for complex formation and endosomal membrane destabilization.  相似文献   

11.
Atif SM  Hasan I  Ahmad N  Khan U  Owais M 《FEBS letters》2006,580(9):2183-2190
The membrane-membrane fusion during fertilization of oocyte by spermatozoa is believed to be mainly mediated by so called "fusion proteins". In the present study we have tried to demonstrate that beside the proteins, lipid components of membrane may play an important role in fusion of oocyte with spermatozoa. Conventional membrane-membrane fusion assays were used as means to demonstrate fusogenic potential of human sperm membrane lipids. The liposomes (spermatosomes) made of the lipids isolated from sperm membrane were found to undergo strong membrane-membrane fusion as evident from fluorescence dequenching and resonance energy transfer assays. Furthermore, the fusion of these liposomes with living cells (J774 A.1 macrophage cell line) was demonstrated to result in an effective transfer of a water-soluble fluorescent probe (calcein) to cytosol of the target cell. Lastly, the liposomes were demonstrated to behave like efficient vehicles for the in vivo cytosolic delivery of the antigens to target cells resulting in elicitation of antigen specific CD8(+) T cell responses.  相似文献   

12.
Toward human gene therapy and gene analysis in vivo, a novel hybrid vector based on liposome has been developed for more efficient gene delivery and gene expression. The liposome was decorated with HVJ (Sendai virus) envelope fusion proteins to introduce DNA directly into the cytoplasm, and contained DNA and DNA-binding nucelar protein to enhance expression of the gene. Recently, several types of HVJ-liposomes were developed by altering the lipid components of the liposomes. HVJ-cationic liposomes increased gene delivery 100 - 800 times more efficiently in vitro than the conventional HVJ-anionic liposomes. HVJ-cationic liposomes were also more useful for gene expression in restricted portions of organs and for gene therapy of disseminated cancers. It was further discovered that the use of anionic liposomes with a virus-mimicking lipid composition (HVJ-AVE liposomes) increased transfection efficiency by several fold in vivo, especially in liver and muscle. By coupling the Epstein-Barr (EB) virus replicon apparatus to HVJ-liposomes, transgene expression was sustained in vitro and in vivo. Most animal organs were found to be suitable targets for the fusigenicviral liposome system, and numerous gene therapy strategies using this system were successful in animals.  相似文献   

13.
Toward human gene therapy and gene analysis in vivo, a novel hybrid vector based on liposome has been developed for more efficient gene delivery and gene expression. The liposome was decorated with HVJ (Sendal virus) envelope fusion proteins to introduce DNA directly into the cytoplasm, and contained DNA and DNA-binding nuclear protein to enhance expression of the gene. Recently, several types of HVJ-liposomes were developed by altering the lipid components of the liposomes. HVJ-cationic liposomes increased gene delivery 100-800 times more efficiently in vitro than the conventional HVJ-anionic liposomes. HVJ-cationic liposomes were also more useful for gene expression in restricted portions of organs and for gene therapy of disseminated cancers. It was further discovered that the use of anionic liposomes with a virus-mimicking lipid composition (HVJ-AVE liposomes) increased transfection efficiency by several fold in vivo, especially in liver and muscle. By coupling the Epstein-Barr (EB) virus replicon apparatus to HVJ-liposomes, transgene expression was sustained in vitro and in vivo. Most animal organs were found to be suitable targets for the fusigenic-viral liposome system, and numerous gene therapy strategies using this system were successful in animals.  相似文献   

14.
Nasal administration of Ags using a novel hybrid Ag delivery vehicle composed of envelope glycoproteins of Sendai virus on the surface of liposome membranes (fusogenic liposome) efficiently delivered Ags to Ag-sampling M cells in nasopharyngeal-associated lymphoreticular tissue. Additionally, fusogenic liposomes also effectively delivered the Ags into epithelial cells and macrophages in nasopharyngeal-associated lymphoreticular tissue and nasal passages. In vitro Ag presentation assays clearly showed that fusogenic liposomes effectively presented encapsulated Ags via the MHC class II-dependent pathway of epithelial cells as well as macrophages. Fusogenic liposomes also have an adjuvant activity against mucosal epithelial cells to enhance MHC class II expression. According to these high delivery and adjuvant activities of fusogenic liposomes, nasal immunization with OVA-encapsulated fusogenic liposomes induced high levels of OVA-specific CD4(+) Th1 and Th2 cell responses. Furthermore, Ag-specific CTL responses and Ab productions were also elicited at both mucosal and systemic sites by nasal immunization with Ag-encapsulated fusogenic liposomes. These results indicate that fusogenic liposome is a versatile and effective system for the stimulation of Ag-specific immune responses at both mucosal and systemic compartments.  相似文献   

15.
To explore early intermediates in membrane fusion mediated by influenza virus hemagglutinin (HA) and their dependence on the composition of the target membrane, we studied lipid mixing between HA-expressing cells and liposomes containing phosphatidylcholine (PC) with different hydrocarbon chains. For all tested compositions, our results indicate the existence of at least two types of intermediates, which differ in their lifetimes. The composition of the target membrane affects the stability of fusion intermediates at a stage before lipid mixing. For less fusogenic distearoyl PC-containing liposomes at 4 degrees C, some of the intermediates inactivate, and no intermediates advance to lipid mixing. Fusion intermediates that formed for the more fusogenic dioleoyl PC-containing liposomes did not inactivate and even yielded partial lipid mixing at 4 degrees C. Thus, a more fusogenic target membrane effectively blocks nonproductive release of the conformational energy of HA. Even for the same liposome composition, HA forms two types of fusion intermediates, dissimilar in their stability and propensity to fuse. This diversity of fusion intermediates emphasizes the importance of local membrane composition and local protein concentration in fusion of heterogeneous biological membranes.  相似文献   

16.
There seems little doubt now that intravenous liposomal amphotericin B can be a useful treatment modality for the management of immunocompromised patients with suspected or proven disseminated fungal infections. Interestingly, the very significant reduction in toxicity reported when amphotericin B is part of a bilayer membrane is closely tied to the physical characteristics of the liposomes involved, although these are poorly understood at the molecular level. We record here an examination by spectroscopy and freeze-etch electron microscopy of unsonicated amphotericin B multilamellar vesicles prepared along the lines that we and others have followed for samples used in clinical trials and preclinical in vivo or in vitro studies. Our study has focussed on liposomes of 7:3 dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bearing 0-25 mol% amphotericin B, since this lipid mixture has been the choice for the first clinical trials. Phase transition behaviour of these liposomes was examined by electron paramagnetic resonance (EPR) spectroscopy of a nitroxide spin label partitioning into the bilayers. The same experiments were then performed on similarly prepared liposomes of the disaturated species, dipalmitoylphosphatidylcholine (DPPC), and the diunsaturated species, dielaidoylphosphatidylcholine (DEPC). Partial phase diagrams were constructed for each of the lipid/drug mixtures. Melting curves and derived phase diagrams showed evidence that amphotericin B is relatively immiscible with the solid phase of bilayer membranes. The phase diagram for DEPC/amphotericin B was very similar to that of DPPC/amphotericin B, and both exhibited less extensive temperature ranges of phase separation than did the 7:3 DMPC/DMPG mixture with amphotericin B. Between 25 and 37 degrees C the measured fluidity of the 7:3 DMPC/DMPG liposomes was similar to that of the (unsaturated fatty acid) DEPC liposomes, and considerably higher than that seen for (saturated fatty acid) DPPC liposomes. Preparations of 7:3 DMPC/DMPG, DPPC, and DEPC containing 0-25 mol% amphotericin B were examined by freeze-etch electron microscopy at 35 and 22 degrees C (to cover the temperature range of the mammalian body core and periphery). The same liposome features were present in all three liposome types studied. The appearance of individual liposomes at x 100,000 magnification reflected their molecular characteristics, which were found to be significantly heterogeneous within each batch. The lipid/drug structures were bilayer in nature, although liposomes showing considerable disruption were common, particularly at the highest drug concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
ABSTRACT

Three topics are discussed. Enhanced anti-tumor efficacy of targeted doxorubicin-containing sterically-stabilized liposomes using an anti-β1 integrin Fab’ ligand. Use of tumor targeting with an internalizing ligand to improve the efficacy of a non-leaky cisplatin-containing sterically-stabilized liposome formulation. Formulation variables (remote-loading with dextran ammonium sulfate, rigid lipid bilayer) used to optimize in vivo performance of a liposomal camptothecin analog.  相似文献   

18.
Liposomes are one of the most promising systems for selective cellular targeting via introduction of specific ligands for cell-surface receptors. After being taken up by the cells, these liposomes usually follow intracellular pathways of receptor-mediated endocytosis. Control of intracellular trafficking is required for optimized drug delivery. In this study, we elucidated the intracellular fate of transferrin-modified liposomes and succeeded in altering it by introducing the pH-sensitive fusogenic peptide, GALA (WEAALAEALAEALAEHLAEALAEALEALAA). Transferrins that are chemically attached to a liposomal surface (Tf-L) were internalized via receptor-mediated endocytosis more slowly than unmodified transferrins. In contrast to the recyclable nature of transferrin, liposome-attached transferrins together with encapsulated rhodamines were retained in vesicular compartments. When GALA was introduced into liposomal membranes using a cholesteryl moiety for anchoring (Chol-GALA), rhodamines were efficiently released and diffused into the cytosol. The addition of GALA to the Tf-L-containing medium or the encapsulation of GALA in Tf-L did not induce similar effects. These results clearly indicate that GALA must be present on the surface of liposomes to exert its function. In vitro energy transfer and dynamic light scattering experiments suggested that the endosomal escape of the encapsulates in Tf-L equipped with Chol-GALA can be attributed to pH-dependent membrane fusion. With GALA present on the surface, intracellular trafficking of liposomes after receptor-mediated endocytosis could be successfully controlled.  相似文献   

19.
Abstract

Delivery of the drug at a specific site (drug targeting) or controlled and prolonged release of the liposome-bound drug are the two major considerations for adding liposomes to the existing arsenal of drug delivery systems. In particular the concept of liposomal drug targeting has been evolving rapidly in the past 10 years with the development of 'second generation' carriers such as immunoliposomes (liposomes bearing covalently coupled antibodies as homing device) and, more recently, the long-circulating liposomes. In this contribution novel approaches in the field of liposomal drug targeting will be briefly described: (1) immunoliposomes for chemotherapy of intraperitoneal malignancies, such as ovarian carcinoma, (2) a new type of immunoliposomes for mediating the targeting of enzymes to be used for site-specific prodrug activation (immuno-enzymosomes), (3) long-circulating liposomes for the targeting of antibiotics to sites of bacterial infection, and (4) polyethyleneglycol (PEG)-modified proteoliposomes with the homing device coupled to the ends of the long PEG chains for achieving effective target binding along with prolonged circulation times.  相似文献   

20.
Abstract

Introduction

Ever since the liposome has been proposed as an antigen carrier or vaccine adjuvant to enhance immune responses of various vaccines (1), a great deal of effort has been made to understand the physical and chemical properties of the liposome membranes that modulate the potency of liposomal adjuvants [for review, see (2)]. While no generally consistent conclusion can be drawn for all vaccine antigens, the role of lipid fluidity in liposome adjuvanticity has been investigated extensively. Kinsky (3) showed that trinitrophenyl (TNP)-sensitized liposomes composed primarily of gelphased lipids [defined by a gel-to-liquid phase-transition temperature (Tc) higher than 37°C] were more potent in eliciting B cell response. In this study, TNP is a lipid membrane-bound antigen. However, membrane fluidity does not appear to play a role in adjuvanticity with a water-soluble antigen. Six et al. (4) showed, using the water-soluble adenovirus type 5 hexon, that liposomes made of gel-phased lipids – distearoyl phosphatidylcholines (PC) (Tc = 57°C) and dipalmitoyl PC (Tc = 41 °C) - produced similar adjuvant effects in responders compared to liposomes made of liquid-phased lipids – dimyristoyl PC (Tc = 23°C) and dioleoyl PC (Tc = -22°C). Other experimental results regarding membrane fluidity and the adjuvanticity of various lipid compositions and protein antigens (5-8) yielded conflicting conclusions. These inconsistent results may have arisen from the differences in the studied protein antigen and from the unique interaction between the antigen and lipid membrane. Overall, liposome adjuvant studies to date have concentrated on the role of the physical characteristics of liposome membranes in potentiating immune interactions and paid limited attention to the physiological constraint and immune recognition and interaction at the cellular and molecular levels. With the recent advances in our understanding of the cellular and molecular mechanisms of immune regulation, one can now rationally design strategies to deliver antigen and cytokines to selective sites or cells involved in immune potentiation. In the following sections, we will present our observations about such strategies for the delivery of antigens with antigen-presenting liposomes (APLs) targeted to macrophages and the use of liposomes to deliver cytokines for the enhancement of antigen-dependent T and B cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号