首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodistribution and immunotargetability of liposomes composed primarily of dioleoylphosphatidylethanolamine (DOPE) or dioleoylphosphatidylcholine (DOPC) in mice injected via the tail vein were examined and compared. The ganglioside GM1 (7 mol%) prolonged the circulation of DOPC but not DOPE liposomes. Gangliosides GD1a and GT1b (7 mol%) also increased the amount of DOPC liposomes remaining in circulation, and to a similar extent as GM1, at 15 min post injection. However, these liposomes were cleared from the circulation by 2.5 h. Monoclonal antibody 34A, which specifically binds to a surface glycoprotein (gp 112) of the pulmonary endothelial cell surface, was coupled with N-glutarylphosphatidylethanolamine and incorporated into liposomes by a dialysis procedure. These 34A-immunoliposomes, composed of DOPE and GM1 (7 mol%), but not the antibody-free liposomes, accumulated efficiently (approximately 24% of the injected dose) in the lungs. Inclusion of cholesterol (31 mol%) enhanced the lung accumulation of both DOPE/GM1 immunoliposomes and DOPC/GM1 immunoliposomes to 33% and 51% of the injected dose, respectively. The transient increase in DOPC liposome circulation provided by GD1a and GT1b was sufficient to enhance DOPC immunoliposome binding, where 44% and 43% of the injected dose of DOPC/Chol/GD1a and DOPC/Chol/GT1b immunoliposomes accumulated in lung at 15 min after injection, respectively. In general, cholesterol-containing DOPC liposomes were more targetable than DOPE liposomes, and the degree to which these liposomes avoid RES uptake influences their targetability. The results presented here are relevant to the design of targetable drug delivery vehicles.  相似文献   

2.
Abstract

In this study we prepared and characterized monoclonal antibody associated cationic liposomes (immunoliposomes) to be used as a vehicle for human gene therapy of malignant glioma. This association method is especially amenable to mass production. The immunoliposomes consist of N-(a-trimethylammonio-acetyl)-didodecyl-D-glutamate chloride (TMAG), dilauroyl phosphatidylcholine (DLPC), and dioleoyl phosphatidyl- ethanolamine (DOPE) in a molar ratio of 1:2:2 as TMAG:DLPC:DOPE. Their preparation required only the addition of a solution containing plasmid DNA and a monoclonal antibody against glioma-associated antigen to a lipid film of the above three lipids. The association of antibody on the surface of immunoliposomes was confirmed by an immunochemical procedure. Liposome-mediated LacZ gene transfection of human glioma cells resulted in p-galactosidase activity about 2- to 3-fold higher when immunoliposomes were used as compared to control liposomes that were not associated to antibody. Also, the production of human (3-interferon (HuIFN-P) into the medium was 2- to 7-fold higher when HuIFN-P gene was transfected. Based on the present results, the immunoliposomes associating a monoclonal antibody against glioma-associated antigen may become effective carriers for gene transfer to human glioma cells.  相似文献   

3.
Abstract

Target-sensitive liposomes are liposomes which spontaneously destablize when they come into contact with target membrane/surface. The principle lipid in the liposomes ingredient is dioleoyl phosphatidylethanolamine (DOPE) which readily forms inverted micelle at physiological conditions. Earlier design of the liposomes uses acylated antibody as both a bilayer stabilizer and a targeting ligand. Although the immunoliposomes specifically release then-contents upon binding with the target membrane, they are not stable enough for long-term storage. Recent improvement in the design uses a charged phospholipid as a bilayer stabilizer and uses acylated antibody or other ligands at a much lower concentration. The new liposomes are stable for long-term storage, yet still destablize when bound with a target membrane. The rate of destabilization is significantly enhanced at elevated temperatures. The physical and biological properties of these liposomes are reviewed in this paper.  相似文献   

4.
Preparation and characterization of heat-sensitive immunoliposomes   总被引:3,自引:0,他引:3  
Immunoliposomes able to bind specifically to target cells and to release their encapsulated contents upon brief heating were prepared. Monoclonal anti-H2Kk was covalently derivatized with palmitic acid by the method of Huang, A. et al. (Huang, A., Tsao, Y.S., Kennel, S.J. and Huang, L. (1982) Biochim. Biophys. Acta 716, 140-150). The palmitoyl antibody was injected at a controlled rate into a suspension of fused unilamellar dipalmitoylphosphatidylcholine liposomes maintained at a constant temperature. The final protein-to-lipid ratio of the resultant liposomes with incorporated antibody (immunoliposomes) was dependent upon the rate of antibody injection and the lipid concentration. Injection of palmitoyl antibody into a liposome suspension containing 50 mM carboxyfluorescein at 41 degrees C resulted in simultaneous antibody incorporation and entrapment of dye. Immunoliposomes were able to release the entrapped carboxyfluorescein upon heating. The release of dye at temperatures between the pre- and main-transition temperatures of DPPC was abolished by the addition of calf serum (5%). Furthermore, the presence of serum resulted in an increase in the temperature of the maximal release rate and also in the rate of release at that temperature. Retention of antigen-binding capacity was demonstrated by the ability of the immunoliposomes to bind specifically to the target cells. Rapid release of entrapped carboxyfluorescein from immunoliposomes bound to target cells at 4 degrees C was achieved upon brief exposure (less than 3 min) at 41 degrees C. These heat-sensitive immunoliposomes may be useful in enhancing drug delivery to target cells.  相似文献   

5.
P Pinnaduwage  L Huang 《Biochemistry》1992,31(11):2850-2855
Interaction of immunoliposomes composed of dioleoylphosphatidylethanolamine (DOPE) (80%), dioleoylphosphatidic acid (DOPA) (20%), and a small amount of specific antibody with Herpes Simplex virus (HSV) were studied by detecting the immune-dependent lysis of liposomes. DOPA was used as the principal stabilizer of the immunoliposomes. Antibodies conjugated with N-glutarylphosphatidylethanolamine or oxidized GM1 served as the target-specific ligands of immunoliposomes. These immunoliposomes (d = 160-180 nm) were stable for at least one month when stored at 4 degrees C. However, they undergo a rapid aggregation and lysis reaction in the presence of a membrane-bound target such as intact HSV virions. We have also employed epitope peptide-containing liposomes (target liposomes) to mimic the virus and showed that the immunoliposomes could be aggregated and lysed by the target liposomes in an antigen-dependent manner. Immunoliposome lysis could be accelerated by increasing the incubation temperature to 60-70 degrees C. No immunoliposome lysis was observed if the target liposomes were absent, indicating the prolonged stability of the immunoliposomes. Liposome lysis was always accompanied by liposome aggregation. However, the aggregation-induced liposome destabilization is unique to the HII phase-forming lipids such as DOPE. DOPC-containing immunoliposomes did not lyse despite the fact that massive liposome aggregation had taken place.  相似文献   

6.
By combining dioleoylphosphatidylethanolamine (DOPE) with oleic acid (OA), palmitoylhomocysteine (PHC) or dipalmitoylsuccinylglycerol (DPSG) we have prepared pH-sensitive liposomes with different acid sensitivities. DOPE/OA liposomes are the most acid sensitive, while DOPE/DPSG liposomes are the least acid sensitive. Incubation of DOPE/OA liposomes with mouse L929 cells reduces the pH-sensitivity of these liposomes by altering the lipid composition. Using diphtheria toxin fragment A as a marker for cytoplasmic delivery, we find that the delivery kinetics of pH-sensitive immunoliposomes closely correlates with the modified acid sensitivities of the liposomes. Immunoliposomes encounter pH 6-6.2 with a t1/2 of 5-15 min after internalization. By contrast, acidification of the endosomes to pH 5.0 takes longer (t1/2 approximately 25 min). We also used a whole cell null point technique (Yamishiro and Maxfield (1987) J. Cell Biol. 105, 2713-2721) to directly determine the average pH encountered by the endocytosed immunoliposomes. We find that acidification determined by the null point method proceeds less rapidly than that estimated from DTA delivery data. This is likely due to the fact that the measured DTA delivery is done by those liposomes which first arrive at the endosomes with sufficient acidity. Our data suggests that DOPE/PHC immunoliposomes deliver at the early endosome while DOPE/DPSG immunoliposomes deliver at the late endosomes. The DOPE/OA immunoliposomes, with the altered composition and acid sensitivity, deliver with a kinetics intermediate between the other two immunoliposomes. Thus, pH-sensitive liposomes represent useful probes for studying the kinetics of endosome acidification.  相似文献   

7.
The bilayer phase of dioleoylphosphatidylethanolamine (PE) can be stabilized with palmitoyl-IgG monoclonal antibody to the glycoprotein gD of the herpes simplex virus (HSV). Interactions of PE immunoliposomes with the target virions were characterized by analyzing the kinetics of lipid mixing, by liposomal content release, and by ultrastructural studies. As revealed by a resonance energy transfer assay, lipid mixing between PE immunoliposomes and virions was very rapid, with a second-order rate constant (kapp) of 0.173 (min)-1 (microgram/mL virus)-1. In comparison, content release from PE immunoliposomes was much slower and exhibited multiple-phase, mixed-order kinetics, indicating that liposome destabilization involved fusion of liposomes with HSV. The extent and the apparent rate of liposome destabilization were strongly dependent on liposome concentration. This was evident by the fact that only one to two liposomes were destabilized by each virus particle at low liposome concentration (0.1 microM). For higher liposome concentrations (1-10 microM), this value was 35-104. This finding implies that collision among the virus-bound liposomes is essential for the eventual collapse of PE immunoliposomes to form the hexagonal (HII) equilibrium phase which was observed using freeze-fracture electron microscopy. Studies employing soluble gD, immobilized on latex beads, indicated that a multivalent antigen source is essential for PE immunoliposome destabilization. Immediately after liposome-virus binding, fusion of liposome with the viral membrane then follows. Upon growth of the fusion complexes, which increase to 35-104 liposomes for each virus, an eventual collapse of the structure results, driving PE to its equilibrium structure of HII phase.  相似文献   

8.
Interactions between target-sensitive (TS) immunoliposomes and herpes simplex virus (HSV) were investigated. Target sensitivity of phosphatidylethanolamine (PE) immunoliposomes is a result of the ability of acylated monoclonal anti-HSV glycoprotein D (gD) to stabilize the bilayer phase of PE, whereas by itself, PE does not form stable liposomes (Ho, R. J. Y., Rouse, B. T., and Huang, L. (1986) Biochemistry 25, 5500-5506). Upon binding of these immunoliposomes to HSV antigen-containing gD, destabilization of PE immunoliposomes was observed. By encapsulating either a self-quenching fluorescent dye, calcein, or alkaline phosphatase inside the liposomal compartment, the HSV-induced destabilization of TS immunoliposomes was shown to be target-specific. Neither Sendai, Semliki Forest, nor Sindbis virus could significantly destabilize the TS immunoliposomes. Moreover, HSV-induced liposome destabilization could be inhibited by free anti-gD (the same antibody used in TS immunoliposomes) but not by monoclonal anti-HSV glycoprotein B, indicating that the interaction was antigen-specific. Destabilization could also be induced by binding to truncated gD (tgD), but only when in a multivalent form immobilized on latex beads. Truncated gD is a cloned, 312-amino acid fragment of HSV-gD that lacks the transmembrane segment. Preincubation of soluble tgD with the TS immunoliposomes failed to induce destabilization and, in addition, abolished the tgD-bead-induced destabilization. This finding strongly indicated that multivalent binding is essential for TS immunoliposome destabilization. Using alkaline phosphatase encapsulated in the liposomes, TS immunoliposomes could be used to detect HSV in fluid phase with 50% signal recorded at 5 microliters of 3.2 x 10(3) pfu/ml; at least 10-fold more sensitive than the standard double-antibody sandwich enzyme-linked immunosorbent assay. The interactions described here may be useful in designing a homogeneous and sensitive immunoliposome assay.  相似文献   

9.
We investigated the immunological responses induced by human interferon β (IFNβ) gene transfer in human gliomas produced in the brains of nude mice. A suspension of human glioma U251-SP cells was injected into the brains of nude mice. The IFNβ gene was transferred by intratumoral injection with cationic liposomes or cationic liposomes associated with anti-glioma monoclonal antibody (immunoliposomes). When intratumoral injection of liposomes or immunoliposomes containing the human IFNβ gene was performed every second day for a total of six injections, starting 7 days after tumor transplantation, complete disappearance of the tumor was observed in six of seven mice that had received liposomes and in all seven mice receiving immunoliposomes. In addition, experimental gliomas injected with immunoliposomes were much smaller than those injected with ordinary liposomes following delayed injections beginning 14 days after transplantation. An immunohistochemical study of the treated nude mouse brains revealed a remarkable induction of natural killer (NK) cells expressing asialoGM1 antigen. To investigate the significance of NK cells in the antitumor effect, we injected liposomes or immunoliposomes containing the human IFNβ gene into tumors in nude mice depleted of NK cells by irradiation and anti-asialoGM1 antibody administration. The antitumor effect of the liposomes or immunoliposomes was abolished. Subsequent subcutaneous glioma challenge of the nude mice after intracerebral tumor implantation and gene transfer resulted in no subcutaneous tumor growth. These results suggest that the induction of NK cells is important in the cytocidal effect of liposomes or immunoliposomes containing the human IFNβ gene upon experimental gliomas. Received: 10 February 1998 / Accepted: 1 September 1998  相似文献   

10.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 °C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (HII) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

11.
Interactions of antibody stabilized phosphatidylethanolamine (PE) immunoliposomes with Herpes Simplex virus (HSV) and virus infected cells were studied by detecting the immune-dependent lysis of liposomes. Employing PE immunoliposomes bearing anti-HSV glycoprotein D (gD) IgG, immune-specificity of these liposomes were documented by the sole ability of HSV and the HSV-infected L cells to induce immunoliposome lysis. In addition, inhibition of PE immunoliposome lysis by free anti-gD IgG, but not anti-HSV glycoprotein B IgG, indicated the target antigen specificity of these immunoliposomes. Based on these observations, alkaline phosphate encapsulated PE liposomes were used to directly detect HSV in fluid phase. This immunoliposome assay which does not require washing was shown to be very rapid and sensitive: 35pfu of HSV-1 in 5ul could be detected within 1.5hr.  相似文献   

12.
Target-sensitive immunoliposomes: preparation and characterization   总被引:2,自引:0,他引:2  
R J Ho  B T Rouse  L Huang 《Biochemistry》1986,25(19):5500-5506
A novel target-sensitive immunoliposome was prepared and characterized. In this design, target-specific binding of antibody-coated liposomes was sufficient to induce bilayer destabilization, resulting in a site-specific release of liposome contents. Unilamellar liposomes were prepared by using a small quantity of palmitoyl-immunoglobulin G (pIgG) to stabilize the bilayer phase of the unsaturated dioleoylphosphatidylethanolamine (PE) which by itself does not form stable liposomes. A mouse monoclonal IgG antibody to the glycoprotein D of Herpes simplex virus (HSV) and PE were used in this study. A minimal coupling stoichiometry of 2.2 palmitic acids per IgG was essential for the stabilization activity of pIgG. In addition, the minimal pIgG to PE molar ratio for stable liposomes was 2.5 X 10(-4). PE immunoliposomes bound with HSV-infected mouse L929 cells with an apparent Kd of 1.00 X 10(-8) M which was approximately the same as that of the native antibody. When 50 mM calcein was encapsulated in the PE immunoliposomes as an aqueous marker, binding of the liposomes to HSV-infected cells resulted in a cell concentration dependent lysis of the liposomes as detected by the release of the encapsulated calcein. Neither uninfected nor Sendai virus infected cells caused a significant amount of calcein release. Therefore, the release of calcein from PE immunoliposomes was target specific. Dioleoylphosphatidylcholine immunoliposomes were not lysed upon contact with infected cells under the same conditions, indicating that PE was essential for the target-specific liposome destabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The less than optimal accumulation of immunoliposome-associated reagents at target sites has often been attributed to the rapid in vivo clearance of immunoliposomes from the blood. In an attempt to overcome the drawback of rapid clearance and use the targeting potential of immunoliposomes, we have prepared long-circulating, 111In-labeled immunoliposomes. Targeting properties and enhanced circulation times were demonstrated in a rabbit model of acute experimental myocardial infarct. The specificity of liposomes for newly exposed intracellular cardiac myosin at the necrotic sites was achieved by incorporating monoclonal antimyosin antibody. Extended circulation times were achieved by cocoating the antimyosin-liposomes with polyethylene glycol (PEG). The half-life of the immunoliposomes was 40 min, which increased to 200 min with 4% mol PEG and to approximately 1000 min with 10% mol PEG. The degree of binding of modified immunoliposomes at the target sites was also dependent on the concentration of PEG incorporated at the liposome surface. This study demonstrates the accumulation of long-circulating targeted liposomes at the area of acute rabbit experimental myocardial infarction.  相似文献   

14.
The interaction of liposomes with BW 5147 murine thymocytic leukemia cells was studied using fluorescent probes (entrapped carboxyfluorescein and fluorescent phosphatidylethanolamine) in conjunction with a Ficoll-Paque discontinous gradient system for rapid separation of liposomes from cells. Reversible liposomal binding to discrete sites on the BW cell surface was found to represent the major form of interaction; uptake of intact liposomal contents by a process such as liposome-BW cell membrane fusion was found to apparently represent a minor pathway of interaction (2%). Liposomal lysis was found to be associated with the process of liposomal binding (perhaps as a result of the binding itself). Lysis was followed by release of the entrapped carboxyfluorescein into the media and its subsequent uptake by the cells. This lysis was shown to be dependent upon discrete membrane-associated sites that have some of the properties of proteins. The results of these studies suggest that liposomal binding to the cells, subsequent lysis of the liposomes and cellular uptake of their contents should be seriously considered in all studies of liposome-cell interactions as an alternate mode of interaction to the four modes (fusion, endocytosis, adsorption and lipid exchange) previously emphasized in the literature.  相似文献   

15.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 degrees C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (H(II)) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

16.
Dioleoylphosphatidylethanolamine (DOPE)-containing liposomes that demonstrated pH-dependent release of their contents were stabilized in the bilayer form through the addition of a cleavable lipid derivative of polyethylene glycol (PEG) in which the PEG was attached to a lipid anchor via a disulfide linkage (mPEG-S-S-DSPE). Liposomes stabilized with either a non-cleavable PEG (mPEG-DSPE) or mPEG-S-S-DSPE retained an encapsulated dye at pH 5.5, but treatment at pH 5.5 of liposomes stabilized with mPEG-S-S-DSPE with either dithiothreitol or cell-free extracts caused contents release due to cleavage of the PEG chains and concomitant destabilization of the DOPE liposomes. While formulations loaded with doxorubicin (DXR) were stable in culture media, DXR was rapidly released in human plasma. pH-Sensitive liposomes, targeted to the CD19 epitope on B-lymphoma cells, showed enhanced DXR delivery into the nuclei of the target cells and increased cytotoxicity compared to non-pH-sensitive liposomes. Pharmacokinetic studies suggested that mPEG-S-S-DSPE was rapidly cleaved in circulation. In a murine model of B-cell lymphoma, the therapeutic efficacy of an anti-CD19-targeted pH-sensitive formulation was superior to that of a stable long-circulating formulation of targeted liposomes despite the more rapid drug release and clearance of the pH-sensitive formulation. These results suggest that targeted pH-sensitive formulations of drugs may be able to increase the therapeutic efficacy of entrapped drugs.  相似文献   

17.
Interactions of immunoliposomes with target cells   总被引:7,自引:0,他引:7  
We have covalently attached a monoclonal antibody (11-4.1) against the murine major histocompatibility antigen, H-2Kk, on the surface of liposomes. The interaction of these antibody-coated liposomes (immunoliposomes) with target cells, RDM-4 lymphoma (H-2Kk), was investigated. About 90% of the immunoliposomes taken up by target cells at 4 degrees C could be removed by a mild protease treatment of the cells, whereas only 30% of the uptake at 37 degrees C was labile to the same treatment. Furthermore, the uptake of immunoliposomes at 37 degrees C was inhibitable by cytochalasin B or by a combination of 2-deoxyglucose and NaN3. These results suggest that immunoliposome binding to the target cell surface is the primary uptake event at 4 degrees C and that the surface-bound liposomes are rapidly internalized by the cells at 37 degrees C, probably via an endocytic pathway. Studies with fluorescence microscopy of target cells treated with immunoliposomes containing carboxyfluorescein also supported this conclusion. If endocytosis is the mechanism by which immunoliposomes gain entry into target cells, the efficacy of a cytotoxic drug encapsulated would depend on the resistance of the drug to lysosomal inactivation and its ability to escape from the lysosomal system. Consistent with this notion, we observed that methotrexate encapsulated in liposomes bearing 11-4.1 antibody specifically inhibited deoxy[6-3H]uridine incorporation into DNA in target RDM-4 cells but not in P3-X63-Ag8 myeloma cells (H-2Kd) at the same doses. The observed cytotoxic effect of encapsulated methotrexate could be reversed by the treatment of cells with a lysosomotropic amine, chloroquine, which has been shown to increase the intralysosomal pH of mammalian cells. On the other hand, cytosine-beta-D-arabinofuranoside encapsulated in immunoliposomes showed no target-specific killing, probably because the drug is readily inactivated in the lysosomal system. These results are discussed in terms of the drug carrier potential of immunoliposomes.  相似文献   

18.
Dioleoyl phosphatidylethanolamine (DOPE) does not form stable bilayer liposomes at room temperature and neutral pH. However, stable unilamellar liposomes could be prepared by mixing DOPE with a minimum of 12% of a haptenated lipid, N-(dinitrophenylaminocaproyl)-phosphatidylethanolamine (DNP-cap-PE). When the liposomes bound to rabbit anti-DNP IgG that had been adsorbed on a glass surface, lysis of the liposome occurred with the release of the contents into the medium as judged by the fluorescence enhancement of an entrapped self-quenching dye, calcein. On the other hand, incubation of the same liposomes with glass surfaces coated with normal rabbit IgG had little effect. In addition, free anti-DNP IgG induced aggregation of the liposomes but did not cause any dye release. Liposomes composed of dioleoyl phosphatidylcholine (DOPC) and DNP-cap-PE did not lyse when added to the glass surfaces coated with either anti-DNP IgG or normal IgG. A likely mechanism for liposome lysis is that the DNP-cap-PE laterally diffuse to the contact area between the liposome and the glass. Binding of the haptenated lipid with the immobilized and multivalent antibody trap the haptenated lipids in the contact area. As a result of lateral phase separation, lipids may undergo the bilayer to hexagonal phase transition, leading to the leakage of the entrapped dye. Because both the free hapten and the free antibody inhibited the liposome leakage, this process could be used to assay for the free hapten or antibody. We have shown that inhibition assays performed by using this principle can easily detect 10 pmol of free DNP-glycine in 40 microliter. Furthermore, by substituting human glycophorin A, a transmembrane glycoprotein, for the lipid hapten, we have demonstrated that this assay system is also applicable to detect protein antigen with a sensitivity of sub-nanogram level.  相似文献   

19.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

20.
Delivering phosphodiester ONs (PO-ONs) remains an attractive but challenging goal in antisense therapy. Both in the literature and in our experiments, most cationic liposomes fail in generating an antisense effect with PO-ONs, while they succeed with chemically modified ONs such as phosphothioate ONs (PS-ONs). This work aims to explain the biological activity of PO- and PS-ONs delivered by DOTAP/DOPE liposomes based on a detailed understanding of their cell biological behavior by means of fluorescence correlation spectroscopy and confocal laser scanning microscopy. We conclude that DOTAP/DOPE liposomes are not suited to deliver PO-ONs due to the release of naked PO-ONs in the cytosol at the time of the endosomal escape of the liposomes and the subsequent rapid degradation of the naked PO-ONs. Carriers that would not release the PO-ONs upon endosomal escape but would continue to carry the PO-ONs until they arrive at the target mRNA could therefore be better suited to delivering PO-ONs. In the case of PS-ONs, the ONs are not degraded upon release at the time of the endosomal escape of the liposomes, creating a pool of intact, biologically active PS-ONs and thus making DOTAP/DOPE liposomes mainly suitable for delivering nuclease resistant ONs. However, the cells seemed to display an export pathway for removing intact PS-ONs from the cells, limiting the presence of naked PS-ONs in the nucleus to approximately 8 h following the delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号