首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Different behavioral reactivity of rabbit groups differentiated by locomotor activity in the "open field" was revealed during exposure to emotional stimuli (rustle, loud sound, pressuring on back of the neck, vibroacoustic tactile stimulation of an ear). In passive rabbits, the active locomotor reactions were induced harder and freezing was obtained easier than in active animals. During exposure to sound stimuli, passive rabbits increased their locomotion more rarely than active animals, pressing on back of the neck produced longer freezing, a threshold of defensive ear shaking in response to a vibroacoustic stimulus in passive animals was highest. Training to mild immobilization increased the threshold of defensive responses in active rabbits and animals of the intermediate type. Changes in respiratory parameters were correlated with behavioral reactions to emotional stimuli. The duration of exhalation and respiratory cycle increased during freezing and increased during enhanced locomotion. The duration of inhalation decreased in response to emotional stimuli irrespective of a behavioral reaction. The respiratory reactions to emotional stimuli differed in rabbits of different groups. The respiratory rate more frequently changed in passive rabbits than in animals of other groups. Passive animals reacted mainly by exhalation, active rabbits and animals from the intermediate group predominantly responded by inhalation.  相似文献   

2.
Mechanisms for the intestinal absorption of bile acids   总被引:8,自引:0,他引:8  
In this review experimental data are summarized which indicate that at least four different transport mechanisms account for net movement of bile acids across the gastrointestinal tract. These are active transport and the passive mechanisms of ionic, nonionic, and micellar diffusion. Of these four, active transport and passive nonionic diffusion are quantitatively of the greatest importance. Active transport is confined to the ileum and probably plays a dominant role in the absorption of conjugated bile acids. Passive nonionic diffusion may occur at any level of the gastrointestinal tract and probably is the major mechanism for the absorption of unconjugated bile acids.  相似文献   

3.
4.
Chloride channels and transporters of the CLC gene family are expressed in virtually all cell types and are crucial in the regulation of membrane potential, chloride homeostasis and intravesicular pH. There are two gating processes that open CLC channels-fast and slow. The fast gating process in CLC channels has recently been linked to a small movement of a glutamate side chain. However, the molecular mechanism underlying the slow gating process is still elusive. Using spectroscopic microscopy, we observed a large backbone movement in the C terminus of the CLC-0 chloride channel that was functionally linked to slow gating. We further showed that the C-terminal movement had a time course similar to slow gating. In addition, a mutation known to lock the slow gate open prevented movement of the C terminus. When combined with recent structural information on the CLC C terminus, our findings provide a structural model for understanding the conformational changes linked to slow gating in CLC transport proteins.  相似文献   

5.
Many children with autistic spectrum disorders have unusual reactions to certain sensory stimuli. These reactions vary along a hyper- to hypo-responsivity continuum. For example, some children overreact to weak sensory input, but others do not respond negatively to even strong stimuli. It is typically assumed that this deviant responsivity is linked to sensitivity, although the particular stage of sensory processing affected is not known. Psychophysical vibrotactile thresholds of six male children (age: 8–12) who were diagnosed to have autistic spectrum disorders and six normal male children (age: 7–11) were measured by using a two-alternative forced-choice task. The tactile stimuli were sinusoidal displacements and they were applied on the terminal phalanx of the left middle finger of each subject. By using a forward-masking paradigm, 40- and 250-Hz thresholds of the Pacinian tactile channel and 40-Hz threshold of the Non-Pacinian I tactile channel were determined. There was no significant difference between the thresholds of autistic and normal children, and the autistic children had the same detection and masking mechanisms as the normal children. The sensory responsivity of each subject was tested by clinical questionnaires, which showed again no difference between the two subject groups. Furthermore, no significant correlations could be found between the questionnaire data and the psychophysical thresholds. However, there was a high correlation between the data from the tactile and emotional subsets of the questionnaires. These results support the hypothesis that the hyper- and hypo-responsivity to touch, which is sometimes observed in autistic spectrum disorders, is not a perceptual sensory problem, but may probably be emotional in origin.  相似文献   

6.
Tactile sensitivity of normal and autistic children   总被引:1,自引:0,他引:1  
Many children with autistic spectrum disorders have unusual reactions to certain sensory stimuli. These reactions vary along a hyper- to hypo-responsivity continuum. For example, some children overreact to weak sensory input, but others do not respond negatively to even strong stimuli. It is typically assumed that this deviant responsivity is linked to sensitivity, although the particular stage of sensory processing affected is not known. Psychophysical vibrotactile thresholds of six male children (age: 8-12) who were diagnosed to have autistic spectrum disorders and six normal male children (age: 7-11) were measured by using a two-alternative forced-choice task. The tactile stimuli were sinusoidal displacements and they were applied on the terminal phalanx of the left middle finger of each subject. By using a forward-masking paradigm, 40- and 250-Hz thresholds of the Pacinian tactile channel and 40-Hz threshold of the Non-Pacinian I tactile channel were determined. There was no significant difference between the thresholds of autistic and normal children, and the autistic children had the same detection and masking mechanisms as the normal children. The sensory responsivity of each subject was tested by clinical questionnaires, which showed again no difference between the two subject groups. Furthermore, no significant correlations could be found between the questionnaire data and the psychophysical thresholds. However, there was a high correlation between the data from the tactile and emotional subsets of the questionnaires. These results support the hypothesis that the hyper- and hypo-responsivity to touch, which is sometimes observed in autistic spectrum disorders, is not a perceptual sensory problem, but may probably be emotional in origin.  相似文献   

7.
While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive) and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices.  相似文献   

8.
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move slowly to account for slow activation and deactivation, or could the voltage sensor move rapidly to account for the rapid kinetics and intrinsic voltage dependence of inactivation? To probe voltage sensor movement, we used a fluorescence technique to examine conformational changes near the positively charged S4 region. Fluorescent probes attached to three different residues on the NH2-terminal end of the S4 region (E518C, E519C, and L520C) reported both fast and slow voltage-dependent changes in fluorescence. The slow changes in fluorescence correlated strongly with activation gating, suggesting that the slow activation gating of HERG results from slow voltage sensor movement. The fast changes in fluorescence showed voltage dependence and kinetics similar to inactivation gating, though these fluorescence signals were not affected by external tetraethylammonium blockade or mutations that alter inactivation. A working model with two types of voltage sensor movement is proposed as a framework for understanding HERG channel gating and the fluorescence signals.  相似文献   

9.
Two male Florida manatees (Trichechus manatus latirostris) demonstrated sensitive tactile discrimination in a two‐alternative forced choice task, using a modified staircase method. Stimuli were acrylic plates with vertical gratings of ridges and grooves. The standard stimulus, present on every trial, had 2 mm gratings and the comparison stimuli had wider gratings. The blindfolded subjects were trained to demonstrate discrimination by pressing the target with wider gratings. Discrimination thresholds (75% correct) for the subjects were 2.05 mm and 2.15 mm, corresponding to Weber fractions of 0.025 and 0.075, respectively. These results indicate thresholds on similar stimuli comparable to humans (index finger tasks) and better than harbor seals, Phoca vitulina, and the closely related Antillean manatee, Trichechus manatus manatus. Memory for the tactile task was quite stable for both subjects, over 2 yr in the case of one of the subjects. Video analysis of responses indicated that bristle‐like hairs, perioral bristles, and skin on the oral disk were involved in the discrimination response.  相似文献   

10.
Arthropod touch reception: spider hair sensilla as rapid touch detectors   总被引:3,自引:3,他引:0  
Wandering spiders like Cupiennius salei are densely covered by tactile hairs. In darkness Cupiennius uses its front legs as tactile feelers. We selected easily identifiable hairs on the tarsus and metatarsus which are stimulated during this behavior to study tactile hair properties. Both the mechanical and electrophysiological hair properties are largely independent of the direction of hair displacement. Restoring torques measure 10(-9) to 10(-8) Nm. The torsional restoring constant S changes non-linearly with deflection angle. It is of the order of 10(-8) Nm/rad, which is about 10,000 times larger than for trichobothria. Angular thresholds for the generation of action potentials are ca.1 degrees. Electrophysiology reveals a slow and a fast sensory cell, differing in adaptation time. Both cells are movement detectors mainly responding to the dynamic phase (velocity) of a stimulus. When applying behaviorally relevant stimulus velocities (up to 11 cm s(-1)) threshold deflection for the elicitation of action potentials and maximum response frequency are reached as early as 1.2 ms after stimulus onset and followed by a rapid decline of impulse frequency. Obviously these hairs inform the spider on the mere presence of a stimulus but not on details of its time-course and spatial orientation.  相似文献   

11.
KV11.1 voltage-gated K+ channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges.  相似文献   

12.
Human ether-a-go-go related gene (hERG) channel gating is associated with slow activation, yet the mechanistic basis for this is unclear. Here, we examine the effects of mutation of a unique glycine residue (G546) in the S4-S5 linker on voltage sensor movement and its coupling to pore gating. Substitution of G546 with residues possessing different physicochemical properties shifted activation gating by ∼−50 mV (with the exception of G546C). With the activation shift taken into account, the time constant of activation was also accelerated, suggesting a stabilization of the closed state by ∼1.6-4.3 kcal/mol (the energy equivalent of one to two hydrogen bonds). Predictions of the α-helical content of the S4-S5 linker suggest that the presence of G546 in wild-type hERG provides flexibility to the helix. Deactivation gating was affected differentially by the G546 substitutions. G546V induced a pronounced slow component of closing that was voltage-independent. Fluorescence measurements of voltage sensor movement in G546V revealed a slow component of voltage sensor return that was uncoupled from charge movement, suggesting a direct effect of the mutation on voltage sensor movement. These data suggest that G546 plays a critical role in channel gating and that hERG channel closing involves at least two independently modifiable reconfigurations of the voltage sensor.  相似文献   

13.
The influence of heat- and cold-induced pain on tactile sensitivity, a "touch gate", was measured under conditions in which the location of the noxious stimuli was varied with respect to the tactile stimulus applied to the thenar eminence of humans. Vibrotactile thresholds were measured in the absence of pain and during administration of a painful stimulus, with the stimulus frequencies selected to activate independently the four psychophysical channels hypothesized to exist in human glabrous skin. Heat-induced pain produced by spatially co-localizing the noxious stimuli with the tactile stimuli was found, on average, to elevate threshold amplitude by 2.2 times (6.7 dB). Co-localized, cold-induced pain raised the average thresholds by about 1.5 times (3.6 dB). Heat-induced pain presented contralaterally produced no change in vibrotactile sensitivity indicating that the effect is probably not due to attentional mechanisms. Ipsilateral heat-induced pain caused an elevation in tactile thresholds even when the noxious and non-noxious stimuli were not co-localized, and the effect may seem to require that the painful stimulus be within the somatosensory region defined possibly in terms of dermatomal organization. Thus the effect is probably related to somatotopic organization and is not peripherally mediated. A brief discussion as to the possible locus of the touch gate within the nervous system is also given.  相似文献   

14.
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.  相似文献   

15.
The influence of heat- and cold-induced pain on tactile sensitivity, a "touch gate", was measured under conditions in which the location of the noxious stimuli was varied with respect to the tactile stimulus applied to the thenar eminence of humans. Vibrotactile thresholds were measured in the absence of pain and during administration of a painful stimulus, with the stimulus frequencies selected to activate independently the four psychophysical channels hypothesized to exist in human glabrous skin. Heat-induced pain produced by spatially co-localizing the noxious stimuli with the tactile stimuli was found, on average, to elevate threshold amplitude by 2.2 times (6.7 dB). Co-localized, cold-induced pain raised the average thresholds by about 1.5 times (3.6 dB). Heat-induced pain presented contralaterally produced no change in vibrotactile sensitivity indicating that the effect is probably not due to attentional mechanisms. Ipsilateral heat-induced pain caused an elevation in tactile thresholds even when the noxious and non-noxious stimuli were not co-localized, and the effect may seem to require that the painful stimulus be within the somatosensory region defined possibly in terms of dermatomal organization. Thus the effect is probably related to somatotopic organization and is not peripherally mediated. A brief discussion as to the possible locus of the touch gate within the nervous system is also given.  相似文献   

16.
Insufficient active knee flexor stiffness may predispose the anterior cruciate ligament to injury. Insufficient passive stiffness may result in insufficient active stiffness. Similarly, higher levels of musculotendinous extensibility may inhibit active and passive muscle stiffness, potentially contributing to an increased risk of injury. The literature is both limited and inconsistent concerning relationships between extensibility, passive stiffness, and active stiffness. Extensibility was measured as the maximal active knee extension angle from a supine position with the hip flexed to 90°. Passive stiffness was calculated as the slope of the moment–angle curve resulting from passive knee extension. Active stiffness was assessed via acceleration associated with damped oscillatory motion about the knee. Stepwise multiple regression indicated that passive stiffness accounted for 25% of active muscle stiffness variance. The linear combination of extensibility and passive stiffness explained only 2% more variance compared to passive stiffness alone. Musculotendinous extensibility was moderately related to passive muscle stiffness, and weakly related to active muscle stiffness. The moderate relationship observed between active and passive stiffness emphasizes the dependence of active muscle stiffness on cross-bridge formation, and the relatively smaller contribution from parallel elastic tissues. Additionally, heightened extensibility does not appear to be a predisposing factor for reduced muscle stiffness.  相似文献   

17.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

18.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

19.
This is a report of experiments carried out on the medial gastrocnemius muscle of the anesthetized cat, investigating the effects of eccentric contractions carried out at different muscle lengths on the passive and active length-tension relationships. In one series of experiments, the motor supply to the muscle was divided into three approximately equal parts; in the other, whole muscles were used. Fifty eccentric contractions were carried out over different regions of the active length-tension curve for each partial or whole muscle. Active and passive length-tension curves were measured before and after the eccentric contractions. When eccentric contractions were carried out at longer lengths, there was a larger shift of the optimum length for active tension in the direction of longer muscle lengths and a larger fall in peak isometric tension. Passive tension was higher immediately after the eccentric contractions, and if the muscle was left undisturbed for 40 min, it increased further to higher values, particularly after contractions at longer lengths. A series of 20 passive stretches of the same speed and amplitude and covering the same length range as the active stretches, reduced the passive tension which redeveloped over a subsequent 40-min period. It is hypothesized that there are two factors influencing the level of passive tension in a muscle after a series of eccentric contractions. One is injury contractures in damaged muscle fibers tending to raise passive tension; the other is the presence of disrupted sarcomeres in series with still-functioning sarcomeres tending to reduce it.  相似文献   

20.
Szechuan pepper, a widely used ingredient in the cuisine of many Asian countries, is known for the tingling sensation it induces on the tongue and lips. While the molecular mechanism by which Szechuan pepper activates tactile afferent fibres has been clarified, the tingling sensation itself has been less studied, and it remains unclear which fibres are responsible. We investigated the somatosensory perception of tingling in humans to identify the characteristic temporal frequency and compare this to the established selectivity of tactile afferents. Szechuan pepper was applied to the lower lip of participants. Participants judged the frequency of the tingling sensation on the lips by comparing this with the frequencies of mechanical vibrations applied to their right index finger. The perceived frequency of the tingling was consistently at around 50 Hz, corresponding to the range of tactile RA1 afferent fibres. Furthermore, adaptation of the RA1 channel by prolonged mechanical vibration reliably reduced the tingling frequency induced by Szechuan pepper, confirming that the frequency-specific tactile channel is shared between Szechuan pepper and mechanical vibration. Combining information about molecular reactions at peripheral receptors with quantitative psychophysical measurement may provide a unique method for characterizing unusual experiences by decomposing them into identifiable minimal units of sensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号