首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
RNA干涉及其应用前景   总被引:5,自引:7,他引:5  
张利生  陈大元 《遗传》2003,25(3):341-344
RNA干涉是指由特定双链RNA(dsRNA)引起的转录后基因沉默现象。研究表明,Dicer断裂dsRNA产生的小干涉RNA可以抑制哺乳动物体细胞和胚胎中的基因的表达。RdRP在扩增RNAi中起着关键性的作用,RdRP活性复制较长的触发性dsRNA或以一种非引物的方式复制短的siRNA,即以siRNA为引物的RdRP反应使靶mRNA转变为dsRNA,同时复制触发性dsRNA。所有的产物又可作为Dicer的底物,起始RdRP级联反应。本文综述了RNAi可能的作用机制,并对RNAi在分析功能基因组、药物治疗等方面的应用前景进行了展望。  相似文献   

4.
5.
6.
7.
8.
Abstract

There is an important precedent for inhalation delivery of exogenous lipids: the administration of pulmonary surfactant to newborns and adults with acute respiratory distress syndrome. However, to my knowledge this approach has not been exploited for the delivery of lipid-associated drugs to the lung.  相似文献   

9.
10.
肿瘤新生血管及分子靶向治疗新策略   总被引:4,自引:0,他引:4  
肿瘤血管靶向治疗是基于肿瘤新生血管与正常血管的不同,药物专一识别并阻断肿瘤新生血管,使肿瘤细胞“饿死”,而不影响正常细胞。从1971年Folkman提出“饿死肿瘤”的假说到2004年第一个血管靶向药物上市,记载着30多年领域发展的传奇经历。当今,肿瘤血管已成为生物医学和临床研究的热点,新的发现层出不穷。该文重点介绍肿瘤血管新靶点、新机制、新药物与未来发展。  相似文献   

11.
In the recent past, prevalence of life threatening fungal diseases have increased rapidly in immune-compromised cases such as acquired immunodeficiency syndrome (AIDS), cancer, organ transplant etc. Side by side, the appearance of drug resistance to the presently available antifungal therapeutics is on a rapid rise. It has become a top priority for the academia and pharmaceutical industries to develop new antifungal agents able to combat this resistance, and at the same time, possess potential broad spectrum of activity and minimum toxicity. An understanding of the pharmacological interactions between antifungal agents and their targets offers opportunities for design of new therapeutics. This review discusses the various methodology of drug design, structure activity relationships (SARs), and mode of action of variety of new antifungal agents.  相似文献   

12.
ABSTRACT

This article comprises detailed information about L-asparaginase, encompassing topics such as microbial and plant sources of L-asparaginase, treatment with L-asparaginase, mechanism of action of L-asparaginase, production, purification, properties, expression and characteristics of l-asparaginase along with information about studies on the structure of L-asparaginase. Although L-asparaginase has been reviewed by , our effort has been to include recent and updated information about the enzyme covering new aspects such as structural modification and immobilization of L-asparaginase, recombinant L-asparaginase, resistance to L-asparaginase, methods of assay of L-asparagine and L-asparaginase activity using the biosensor approach, L-asparaginase activity in soil and the factors affecting it. Also, side-effects of L-asparaginase treatment in acute lymphoblastic leukemia (ALL) have been discussed in the current review. L-asparaginase has been and is still one of the most widely studied therapeutic enzymes by researchers and scientists worldwide.  相似文献   

13.
Abstract

Liposomes can be used as carriers for antigens, immunomodulators and cytotoxic drugs. Such liposomes may serve as a tool to manipulate immune and non-immune host defense mechanisms. In most cases their effects are mediated by macrophages. Macrophages seem to be involved in humoral (antibody) responses and in cytotoxic T-lymphocyte responses. They are also important in non-immune defense mechanisms against foreign invaders and altered self. Which macrophages can be influenced by the liposome encapsulated molecules depends on the administration route of the liposomes. The macrophages ingest the liposomes. Once within the cell, lysosomal phospholipases disrupt the phospholipid bilayers. In this way, encapsulated molecules are released in the cell. Such liposome delivered molecules can be processed (antigens), activate the macrophage (immunomodulators) or disturb the metabolism of the cells (cytotoxic drugs). That the latter inhibition of macrophage functions may result in immunopotentiation is explained by the fact that certain macrophages are regulating immune functions by suppression.  相似文献   

14.
15.
The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.  相似文献   

16.
17.
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.  相似文献   

18.
Application of drugs in therapeutic and preventive medicine is marred by indiscriminate drug action and inability of drugs to reach areas in need of treatment. On the other hand, development of new, more selective drugs is very expensive, lengthy and often uncertain. Recently, much attention has been given to an alternative approach, namely the use of drug delivery systems which are expected to optimize the action of drugs already in existence. One of the more promising systems is liposomes, microscopic spheres made of natural materials (lipids) and able to accommodate large amounts of drug. Fifteen years of liposome research have produced a great deal of knowledge of how the carrier interacts with the biological milieu. In turn, such knowledge has helped us to optimize liposomal drug action in situations as diverse as cancer and microbial therapy, vaccines, oral therapy and medical diagnostics. Some of these applications, especially those involving the phagocytic cells (e.g. antimicrobial therapy and vaccines) seem realistic enough to warrant extensive support from industry.  相似文献   

19.
The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号