首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two strategies for increasing liposome stability in vivo are described in this review. The first strategy involves the encapsulation of liposomes within polymeric microcapsules of alginate-poly(L-lysine) that retained the liposomes inside but allowed the outward diffusion of proteins of 100 kDa or less, once they were released from the encapsulated liposomes. In vivo studies revealed that the microencapsulated liposome systems (MELs) extended the delivery of a model antigen, bovine serum albumin (BSA), for more that 80 days, resulting in the prolonged production of high levels of antigen-specific antibodies. The antibody levels were higher that those obtained with rats injected with BSA in complete Freund's adjuvant, or in liposomes. The unique construction of MELs enabled also the enzymatically-triggered pulsatile delivery of proteins from encapsulated liposomes, which was not possible before with liposomes.  相似文献   

2.
A system for the delayed or pulsed release of biologically active substances was achieved by encapsulating liposomes containing the substance of interest inside microcapsules. The microcapsules retain the liposomes but allow controlled diffusion of the active substance when it is released from the liposomes. Furthermore, by coating the liposomes with phospholipase A2 (an enzyme that removes an acyl group from the 2 position of phospholipids) before placing them within the microcapsule, a pulsatile release pattern was achieved both in vitro and in vivo. The time of onset of the pulse as well as the release rate can be controlled by the amount of phospholipase A2, the molecular weight of the poly(L-lysine) that is used to coat the microencapsulated liposomes, and the composition of the phospholipid bilayer membrane. Even at 37 degrees C the system would protect a model enzyme (horseradish peroxidase). When not placed inside the microencapsulated liposomes, the enzyme lost its activity in solution at 37 degrees C in a few days, whereas it retained 40% of the initial activity after 30 days of incubation at 37 degrees C inside the microencapsulated liposomes.  相似文献   

3.
Abstract

Transdermal drug delivery systems are a key technology for skin-related diseases and for cosmetics development. The delivery of active ingredients to an appropriate site or target cells can greatly improve the efficacy of medical and cosmetic agents. For this study, liposome-based transdermal delivery systems were developed using pH-responsive phytosterol derivatives as liposome components. Succinylated phytosterol (Suc-PS) and 2-carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS) were synthesized by esterification of hydroxy groups of phytosterol. Modification of phytosterol derivatives on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes was confirmed by negatively zeta potentials at alkaline pH and the change of zeta potentials with decreasing pH. In response to acidic pH and temperatures higher than body temperature, Suc-PS-containing and CHex-PS-containing liposomes exhibited content release at intracellular acidic compartments of the melanocytes at the basement membrane of the skin. Phytosterol-derivative-containing liposomes were taken up by murine melanoma-derived B16-F10 cells. These liposomes delivered their contents into endosomes and cytosol of B16-F10 cells. Furthermore, phytosterol-derivative-containing liposomes penetrated the 3?D skin models and reached the basement membrane. Results show that pH-responsive phytosterol-derivative-containing DMPC liposomes are promising for use in transdermal medical or cosmetic agent delivery to melanocytes.  相似文献   

4.
Abstract

Delivery of the drug at a specific site (drug targeting) or controlled and prolonged release of the liposome-bound drug are the two major considerations for adding liposomes to the existing arsenal of drug delivery systems. In particular the concept of liposomal drug targeting has been evolving rapidly in the past 10 years with the development of 'second generation' carriers such as immunoliposomes (liposomes bearing covalently coupled antibodies as homing device) and, more recently, the long-circulating liposomes. In this contribution novel approaches in the field of liposomal drug targeting will be briefly described: (1) immunoliposomes for chemotherapy of intraperitoneal malignancies, such as ovarian carcinoma, (2) a new type of immunoliposomes for mediating the targeting of enzymes to be used for site-specific prodrug activation (immuno-enzymosomes), (3) long-circulating liposomes for the targeting of antibiotics to sites of bacterial infection, and (4) polyethyleneglycol (PEG)-modified proteoliposomes with the homing device coupled to the ends of the long PEG chains for achieving effective target binding along with prolonged circulation times.  相似文献   

5.
BackgroundLiposomes are predominantly used sorts of nanocarriers for active a targeted delivery through surface functionalization using targeting ligand. The folate receptors are overexpressed in various cancers including breast cancer and because of its binding aptitude specifically to folate receptors, folic acid became the attractive ligand.MethodsIn this research, we have developed a folate and Poly-l-Lysine conjugate and coated this conjugate onto the liposomes. The prepared liposomes were characterized using DLS, FTIR, NMR, SEM, TEM, XRD, AFM, stability and drug release studies. Furthermore, in vitro studies were carried out on FR overexpressed breast cancer cell line.ResultsThe FA-LUT-ABC-Lip have diameter of 183 ± 3.17 nm with positive surface charge +33.65 ± 3 mV and the drug release studies confirm the NIR responsive payload cleavage. The coated formulation (in presence of NIR light) effectively reduced the IC50 values and kills breast cancer cells through FR mediated internalization and accelerated drug release. Moreover, LUT Formulation shows anticancer effect due to significant inhibition of cell migration and proliferation by regulating VEGF expression and induced apoptosis through the caspase-3 up-regulation.ConclusionIt is evident from the in vitro studies that the formulation was found to be very effective and can be explored for triggered and targeted delivery of the substances through active targeting.General significanceCombining receptor mediated drug delivery with triggered release aid in more amounts of drug reaching the target site and achieving enhanced therapeutic activity.  相似文献   

6.
Small interfering RNA (siRNA) is potent and highly specific for gene silencing and there is currently a lot of enthusiasm for developing siRNA into a drug. However, for most therapeutic applications of siRNA, delivery systems are needed. These delivery systems have multiple requirements and should on one hand ideally be stable carriers protecting the siRNA from degradation and on the other hand assist the siRNA in overcoming membrane barriers for intracellular delivery to the cytosol. Long-circulating liposomes, which are sensitive to secretory phospholipase A2 (sPLA2) are feasible delivery systems for systemic administration of drugs due to their passive targeting to pathological tissue via the enhanced permeability and retention (EPR) effect and their site-specific, enzyme-triggered release of encapsulated drug in response to sPLA2 which exists locally at elevated levels at, e.g,. sites of inflammation. However, recent data suggest that endosomal membrane destabilizing approaches could be addressed to design sPLA2-sensitive liposomes as successful delivery systems for siRNA to the RNA interference pathway in the cytoplasm upon systemic administration.  相似文献   

7.
Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug—chlorambucil (CHL)—was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.  相似文献   

8.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 °C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (HII) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

9.
Abstract

Changing liposome physical, properties by designing vesicles with a hydrophilic/ steric barrier at the liposome surface has resulted in altered pharmacokinetics of these liposomes leading to increased blood levels of drug-carrying liposomes and reduced uptake by the RES. This discovery opens up new therapeutic opportunities for liposome-based drug delivery using hydrophilic coatings. Unravelling the mechanism of action of such coatings is an exciting challenge that will facilitate optimization of liposome surfaces for specific drug delivery applications. This article puts forward a series of assumptions and hypotheses to characterize the way hydrophilic coatings extend the plasma half-life of sterically - coated liposomes, to begin to explain how a steric barrier at the surface of liposomes may act. These speculations are examined in the light of current experimental evidence including that from non-liposome systems, and a model for particle removal from the circulation is proposed.

Introduction

Since the days when liposomes were first conceived for drug delivery, ways have been sought to increase the length of time injected vesicles circulate in the body (1). In the mid-eighties, manipulation of the liposomal lipid composition increased the amount of time liposomes remained in the circulation for a well-defined but relatively limited design of  相似文献   

10.
Abstract

Achievements of avoiding the RES uptake and seccess in tumor targeting of liposomes in vivo have brought a great challenge to improve drug delivery efficiency of liposomes to cytoplasmic targets of a cell. Enzymes could be used as a built-in mechanism to regulate the drug release from liposomes. It involves disruption of the permeability barrier of liposome bilayer and has advantages of high specificity and high efficiency. Comparing to other methods, this system has increased the controllability of drug release from liposomes.  相似文献   

11.
Abstract

Phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA) are both hydrophobic stimulators for superoxide release by guinea pig neutrophils. However AA incorporated into liposomes is no longer an effective stimulator. In contrast, PMA incorporated into liposomes is more effective in neutrophil stimulation than free PMA. the ED50 of superoxide release was 3.1 × 10?8M, and 4.0 × 10?10 M for free PMA and liposomes composed of egg phosphatidylethanolamine (PE) /AA/ PMA (molar ratio 7:2:1), respectively. PMA incorporated into PE/AA liposomes could also shorten the lag period of superoxide release in a concentration-dependent fashion. the enhanced stimulation activity of PMA in liposomes was correlated with the enhanced liposome uptake by neutrophils, probably via phagocytosis. Weak bases and a proton ionophore inhibited superoxide release by cells stimulated with either free or liposomal PMA. these results suggested that free PMA attached to cell membranes might be endocytosed and stimulate the superoxide-generating systems via an endocytic compartment(s). Since liposomes effectively deliver the contents into the compartments, liposomal PMA may thus be a potent stimulator for neutrophils. This hypothesis is further supported by the observation that pH-sensitive liposomes, which are active in the acidic endocytic compartments, are more effective carriers for PMA than the conventional pH-insensitive liposomes.  相似文献   

12.
Abstract

Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   

13.
Abstract

This overview will discuss our studies of liposomes aerosols to treat diseases of the lung and will entail (i) formulation and characterization of liposome aerosols, including dry liposome powder aerosols, (ii) modulation of the pharmacokinetic profile of liposomal drugs delivered by aerosol or intratracheal instillation, (iii) liposome-alveolar macrophage interactions in vitro and in vivo, and (iv) safety of liposome aerosols in vivo in mice, sheep and healthy human volunteers. Water-soluble agents can be retained in liposomes during aerosolization with air-pressure nebulizers within certain limitations of liposome composition, size, and operating conditions. Dry powder liposome aerosols have been formulated and deliver water-soluble encapsulated substances efficiently. Pharmacokinetic profiles of liposomal drugs delivered via intratracheal instillation exhibit typical slow release plasma profiles indicating that the carrier is the rate-limiting barrier for release. Accordingly, pulmonary mean residence times are significantly prolonged and systemic concentrations remain low. Liposomes do not inhibit the phagocytic activity of alveolar macrophages in vitro and in vivo, have no apparent histopathologic effects on lung architecture even after chronic administration, and do not alter dynamic compliance, lung resistance, paO2 and paCO2 in awake, unanesthetized sheep and in healthy human volunteers. In conclusion, liposomes are a promising innocuous aerosol delivery system for drugs to achieve prolonged localized drug concentrations in the lung or intracellular drug targeting to alveolar macrophages.  相似文献   

14.
Summary Cyprosin extract from dried flowers ofCynara cardunculus L. was dissolved in two different buffers (50 mM Tris-HCl, pH 8.3 and 10 mM PBS, pH 7.4), mixed with a sonicated soybean lecithin dispersion and microencapsulated in dehydration-rehydration liposomes. Efficiency of cyprosin encapsulation was 12.1% for Tris-HCl liposomes and 12.3% for PBS liposomes. TCA-soluble N in 24 h cheese was higher when PBS liposomes were added to milk (A280=0.604) than when Tris-HCl liposomes (A280=0.392) or no liposomes (A280=0.359) were added, due to the efficient delivery of cyprosin into the curd by PBS liposomes.  相似文献   

15.
Abstract

The efficacy of gel formulations containing free and liposomal foscarnet has been evaluated in a murine model of cutaneous Herpes simplex virus type-1 infection. Both formulations were applied topically 3 times daily for 4 days and initiated 24 h post-infection. The penetration of liposomes incorporated into the gel in infected skin tissues was better than that of liposomes dispersed in buffer. Therein, their localization mostly matched that of viral antigen detected by immunoperoxydase staining. Despite these facts, the efficacy of gel formulations of both free and liposomal foscarnet in preventing the development of a zosteriform rash in mice was similar. Electron microscopic examination revealed that liposomes incorporated into the gel formed aggregates together with the micelles of gel. Diffusion studies showed that liposomes were trapped within these aggregates and were hardly able to diffuse across a polycarbonate membrane. In addition, although the liposomes were shown to be highly stable in vitro, the formation of these aggregates destabilized their membrane resulting in a premature release of foscarnet from liposomes. The efficacy of both gel formulations was higher than that of solutions of free or liposomal foscarnet suggesting that the gel formulation is a suitable matrix for the delivery of drugs. Thus, strategies aimed at reducing the interaction of liposomes with the gel could be a convenient approach to improve the efficacy of liposome-encapsulated drug over the free drug.  相似文献   

16.
Defined and tunable peptide-lipid membrane interactions that trigger the release of liposome encapsulated drugs may offer a route to improving the efficiency and specificity of liposome-based drug delivery systems, but this require means to tailor the performance of the membrane active peptides. In this paper, the membrane activity of a de novo designed coiled coil peptide has been optimized with respect to sequence and size to improve release efficiency of liposome encapsulated cargo. The peptides were only membrane active when covalently conjugated to the liposomes. Two amino acid substitutions were made to enhance the amphipathic characteristics of the peptide, which increased the release by a factor of five at 1?μM. Moreover, the effect of peptide length was investigated by varying the number of heptad repeats from 2 to 5, yielding the peptides KVC2-KVC5. The shortest peptide (KVC2) showed the least interaction with the membrane and proved less efficient than the longer peptides in releasing the liposomal cargo. The peptide with three heptads (KVC3) caused liposome aggregation whereas KVC4 proved to effectively release the liposomal cargo without causing aggregation. The longest peptide (KVC5) demonstrated the most defined α-helical secondary structure and the highest liposome surface concentration but showed slower release kinetics than KVC4. The four heptad peptide KVC4 consequently displayed optimal properties for triggering the release and is an interesting candidate for further development of bioresponsive and tunable liposomal drug delivery systems.  相似文献   

17.
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A2 (PLA2) at the diseased target tissue. The secretory PLA2 hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA2 only at the diseased target sites, such as inflamed or cancerous tissue.  相似文献   

18.
The current study aims to develop and evaluate a colon-specific, pulsatile drug delivery system based on an impermeable capsule. A pulsatile capsule was prepared by sealing a 5-aminosalicylic acid rapid-disintegrating tablet inside an impermeable capsule body with a konjac glucomannan (KGM)-hydroxypropyl methylcellulose (HPMC)-lactose plug. The drug delivery system showed a typical pulsatile release profile with a lag time followed by a rapid release phase. The lag time was determined by the KGM/HPMC/lactose ratio, the type of HPMC, and the plug weight. The addition of β-glucanase and rat cecal contents into the release medium shortened the lag time significantly, which predicted the probable enzyme sensitivity of the KGM plug. The in vivo studies show that the plasma drug concentration can only be detected 5 h after oral administration of the capsule, which indirectly proves the colon-specific characteristics. These results indicate that the pulsatile capsule may have therapeutic potential for colon-specific drug delivery.  相似文献   

19.
BackgroundLiposomes, used to improve the therapeutic index of new and established drugs, have advanced with the insertion of active targeting. The lectin from Lotus tetragonolobus (LTL), which binds glycans containing alpha-1,2-linked fucose, reveals surface regionalized glycoepitopes in highly proliferative cells not detectable in normally growing cells. In contrast, other lectins localize the corresponding glycoepitopes all over the cell surface. LTL also proved able to penetrate the cells by an unconventional uptake mechanism.MethodsWe used confocal laser microscopy to detect and localize LTL-positive glycoepitopes and lectin uptake in two cancer cell lines. We then constructed doxorubicin-loaded liposomes functionalized with LTL. Intracellular delivery of the drug was determined in vitro and in vivo by confocal and electron microscopy.ResultsWe confirmed the specific localization of Lotus binding sites and the lectin uptake mechanism in the two cell lines and determined that LTL-functionalized liposomes loaded with doxorubicin greatly increased intracellular delivery of the drug, compared to unmodified doxorubicin-loaded liposomes. The LTL-Dox-L mechanism of entry and drug delivery was different to that of Dox-L and other liposomal preparations. LTL-Dox-L entered the cells one by one in tiny tubules that never fused with lysosomes. LTL-Dox-L injected in mice with melanoma specifically delivered loaded Dox to the cytoplasm of tumor cells.ConclusionsLiposome functionalization with LTL promises to broaden the therapeutic potential of liposomal doxorubicin treatment, decreasing non-specific toxicity.General significanceDoxorubicin-LTL functionalized liposomes promise to be useful in the development of new cancer chemotherapy protocols.  相似文献   

20.
Abstract

The development of smart delivery systems able to deliver and target a drug to the site of action is one of the major challenges in the field of pharmaceutical technology. The surface modification of nanocarriers, such as liposomes, is widely investigated either for increasing the blood circulation time (by pegylation) or for interacting with specific tissues or cells (by conjugation of a selective ligand as a monoclonal antibody, mAb). Microscopical analysis thereby is a useful approach to evaluate the morphology and the size owing to resolution and versatility in defining either surface modification or the architecture and the internal structure of liposomes. This contribution aims to connect the outputs obtained by transmission electron (TEM) and atomic force (AFM) microscopical techniques for identifying the modifications on the liposomal surface. To reach this objective, we prepared liposomes applying two different pegylation technologies and further modifying the surface by mAb conjugation. This work demonstrates the feasibility to apply the combined approach (TEM and AFM analysis) in the evaluation of the efficacy of a surface engineering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号