首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for labeling preformed liposomes with technetium-99m (99mTc) has been developed which is simple to perform and stable in vivo. Previous 99mTc-liposome labels have had variable labeling efficiencies and stability. This method consistently achieves high labeling efficiencies (> 90%) with excellent stability. A commercially available radiopharmaceutical kit—hexamethylpropyleneamine oxime (HM-PAO)—is reconstituted with 99mTcO4 and then incubated with preformed liposomes that encapsulate glutathione. The incubation takes only 30 min at room temperature. Liposomes that co-encapsulate other proteins such as hemoglobin or albumin, in addition to glutathione, also label with high efficiency. Both in vitro and in vivo studies indicate good stability of this label. Rabbit images show significant spleen and liver uptake at 2 and 20 h after liposome infusion without visualization of thyroid, stomach or bladder activity.This labeling method can be used to study the biodistribution of a wide variety of liposome preparations that are being tested as novel drug delivery systems. This method of labeling liposomes with 99mTc may also have applications in diagnostic imaging.  相似文献   

2.
Traditionally, when preparing 99mTc-labeled radiopharmaceuticals, [99mTc]pertechnetate is added to the entire contents of a vial of reagent kit, and patient doses are subsequently withdrawn from the vial. This technique of compounding can be potentially wasteful for two reasons: (1) once reconstituted with 99mTc, most reagent kits have a relatively short shelf-life, and thus the entire contents may not be used before expiration and (2) due to a need to conserve radioactivity in many hospitals, enough [99mTc]pertechnetate is added to the reagent kit in order to retrieve only 1–2 patient doses, even though adequate chemicals (ligand, reducing agent, etc.) are present in the reagent kit to supply as many as 5–10 doses. Hence, a method for optimizing the efficient use of reagent kits would be desirable. The purpose of this study was to determine the feasibility of unit-dosing non-radioactive reagent kits and storing these cold unit doses (CUDs) for eventual labeling with 99mTc. To evaluate this concept, unit doses were prepared from reagent kits of medronate (MDP) and pentetate (DTPA). The specific variables studied in this research were the effects of storage time, storage temperature and reconstitution volume (dilution) on the unit doses. These effects were monitored by measuring the radiochemical and biodistribution properties of the unit doses following their final reconstitution with [99mTc]pertechnetate. The labeling efficiency was determined using instant thin layer chromatography (ITLC), and the biodistribution patterns of these radiolabeled CUDs were studied in mice. The results showed that MDP- and DTPA-CUDs stored at −18 °C retained the properties which resulted in acceptable radiochemical purity and biodistribution in mice for as long as 30 days. On the other hand, the radiochemical purity of MDP and DTPA unit doses stored at 25 °C deteriorated rapidly. Mean radiochemical purities as low as 0.58–19.4% were observed on day 30. Altered biodistributions were observed in a manner consistent with the decreased labeling efficiencies. The CUDs of lower dilution (3 mL) appeared to be more stable than the CUDs of higher dilution (10 mL). However, the effect of reconstitution volume was much less significant than the temperature effect on the CUDs. In conclusion, the concept of unit-dosing non-radioactive reagent kits appears to provide an efficient and cost-saving method for preparing infrequent and emergency radiopharmaceutical doses. The study also showed that the storage temperature of these unit doses is critical to the success of the procedure. The volume of reconstitution has a minimal impact on the stability of CUDs if stored at the appropriate temperature.  相似文献   

3.
In this report, we describe the radiosynthesis of a new thiol-targeting prosthetic group for efficient radioactive iodine labeling of biomolecules. Radioiodination using the precursor 3 was performed to obtain 125I-labeled tetrazole 4b with high radiochemical yield (73%) and radiochemical purity. Using the radiolabeled 4b, a single free cysteine containing peptide and human serum albumin were labeled with 125I in modest-to-good radiochemical yields (65–99%) under mildly reactive conditions. A biodistribution study of [125I]7 in normal ICR mice exhibited lower thyroid uptake values than those of 125I-labeled human serum albumin prepared via a traditional radiolabeling method. Thus, [125I]7 could be employed as an effective radiotracer for molecular imaging and biodistribution studies. The results clearly demonstrate that 4b has the potential to be effectively implemented as a prosthetic group in the preparation of radiolabeled biomolecules.  相似文献   

4.
An improved method of direct labeling MAbs with 99mTc is described. Two murine monoclonal antibodies, designated Lym-1 and B72.3, have been successfully labeled with 99mTc in 0.1 M borate buffer at pH 9.3. The choice of buffer and pH was essential for obtaining a radiolabeling yield ⩾98%. In vitro studies demonstrated that the radiolabeled antibodies were stable and retained their immunoreactivity. Imaging and biodistribution studies using Raji and LS174T human tumor-bearing nude mice demonstrated a significant tumor uptake at 24-h post-injection of 99mTc-labeled MAbs. This improved labeling method showed better stability than those of previously published methods and resulted in significant improvement in the uptake of antibody in tumor. External images at 24 h post-injection revealed clearly visible tumors demonstrating the benefit of this method for tumor immunoscintigraphy.  相似文献   

5.
Antibody-mimetic proteins are intensively being developed for biomedical applications including tumor imaging and therapy. Among them, repebody is a new class of protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it’s in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine (His6)-tag bearing repebody (rEgH9) was labeled with [99mTc]-tricarbonyl, and biodistribution was performed following intravenous (I.V.) or intraperitoneal (I.P.) injection. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. Biodistribution data indicates radiotracer has a rapid clearance from blood and excreted through the kidneys for intravenous (I.V.) injection, but comparatively slow clearance for an intraperitoneal (I.P.) injection. SPECT-CT images were found to be in agreement with biodistribution data, high activity was found inside kidneys. The observed result for rapid blood clearance and renal excretion of repebody (rEgH9) provide useful information for the further development of therapeutic strategy.  相似文献   

6.
Radiolabeling of nanoparticles (NPs) has been performed for a variety of reasons, such as for studying pharmacokinetics, for imaging, or for therapy. Here, we describe the in vitro and in vivo evaluation of DTPA-derivatized lipid-based NP (DTPA-NP) radiolabeled with different radiometals, including 111In and 99mTc, for single-photon emission computed tomography (SPECT), 68Ga for positron emission tomography (PET), and 177Lu for therapeutic applications. PEGylated DTPA-NP with varying DTPA amounts, different composition, and size were radiolabeled with 111In, 177Lu, and 68Ga, using various buffers. 99mTc-labeling was performed directly and by using the carbonyl aquaion, [99mTc(H2O)3(CO)3]+. Stability was tested and biodistribution evaluated. High labeling yields (>90%) were achieved for all radionuclides and different liposomal formulations. Specific activities (SAs) were highest for 111In (>4 MBq/μg liposome), followed by 68Ga and 177Lu; for 99mTc, high labeling yields and SA were only achieved by using [99mTc(H2O)3(CO)3]+. Stability toward DTPA/histidine and in serum was high (>80 % RCP, 24 hours postpreparation).). Biodistribution in Lewis rats revealed no significant differences between NP in terms of DTPA loading and particle composition; however, different uptake patterns were found between the radionuclides used. We observed lower retention in blood (<3.3 %ID/g) and lower liver uptake (< 2.7 %ID/g) for 99mTc- and 68Ga, compared to 111In-NP (blood, <4 %ID/g; liver, <3.6 %ID/g). Imaging potential was shown by both PET magnetic resonance imaging fusion imaging and SPECT imaging. Overall, our study shows that PEGylated DTPA-NP are suitable for radiolabeling studies with a variety of radiometals, thereby achieving high SA suitable for targeting applications.  相似文献   

7.
99mTc-HMPAO (technetium99m-hexamethylpropylene amine oxime) radiolabeled-leukocytes or Indium-111 oxine labeled leukocytes scintigraphy and positron emission tomography with [18F]-fludeoxyglucose (18F-FDG) are the reference techniques for infection imaging. These methods have some limits explaining the active research for an ideal infection tracer finding. Because of its potential advantages, leukocyte labeling with 18F-FDG have been developed but is not routinely used for clinical infection imaging. We report the results of our first experience of leukocyte radiolabeling with 18F-FDG, managed on 20 healthy subjects. Labeling efficiency, cellular viability and radiolabeling stability have been assessed. Our results exhibit the influence of different parameters on labeling efficiency: presence of glucose during the labeling reaction, number of cells and volumic activity of 18F-FDG. Stability assessment indicates that 60% of initial cellular activity persist in cells after 1 hour incubation. Our results are similar to literature data and permit us to consider a clinical use of radiolabeled leukocyte with 18F-FDG. Nevertheless, a clinical use of radiolabeled cells can’t be considered before the radiolabeling induced cellular effects have been assessed.  相似文献   

8.
Employment of radiolabeled antibodies in biological studies, allows their specific accumulation in organs and tissues to be accurately detected. However, stability of such radiolabeled antibodies depends on both the method of labeling and particular experimental conditions. Therefore, stability of labeled antibodies should be determined in every particular experiment. In this study we have investigated stability of the 125I-labeled monoclonal antibodies to gliofibrillary acidic protein (GFAP), endothelial antigen AMVB1, and non-specific mouse IgG at the stage of their synthesis and after their intravenous administration to rats with experimental C6 glioma. Stability of labeled antibodies was determined in blood samples and homogenates of organs by the method of their precipitation with trichloroacetic acid. The 125I-radiolabeled antibodies were characterized by high radiochemical putiry, immunochemical activity and stability of the resultant preparations in blood and tissues, and the brain after administration in vivo. Electrophoretic analysis, thin-layer chromatography, and immunohistochemical tests have demonstrated the radiochemical purity, immunochemical competence, and stability of the labeled antibodies in vivo.  相似文献   

9.
(Me)FGC(Bz)DEVD was radiolabeled with technetium-99m in high yield. This tracer was preferentially accumulated in apoptotic cells in the in vitro studies. Tumor uptake occurred in vivo after cisplatin injection due to the apoptosis induction, which not observed in the untreated tumors. Therefore, 99mTc-(Me)FGCDEVD is a potential tracer for apoptosis detection.  相似文献   

10.
The suitability of electron microscope autoradiography for studying the uptake and intracellular localization of lipid vesicles (liposomes) containing radiolabeled saturated phospholipids has been examined. Data are presented showing that preparation of specimens for electron microscope autoradiography by conventional methods is accompanied by significant translocation and intercellular redistribution of radiolabeled saturated lipids, causing spurious labeling patterns. Intercellular redistribution of radiolabeled lipid was demonstrated by mixing glutaraldehyde-fixed mouse L1210 cells that had been incubated with sonicated lipid vesicles containing [3H]dipalmitoyl phosphatidylcholine with an indicator cell population (fixed avian erythrocytes) which had not been exposed to vesicles and showing that after electron microscope processing radiolabeled grains were present in both cell types. The same redistribution artifact also probably affects the intracellular localization of radiolabeled lipids. This artifact is discussed in relation to previous work in which autoradiographic methods have been used for ultrastructural localization of saturated phospholipids in cells and tissues.  相似文献   

11.
Abstract

The use of sterically stabilized poly(ethyleneglycol)-coated liposomes (PEG-liposomes) is becoming increasingly important and several preparations based on long-circulating liposomes are already commercially available. From a clinical point of view, it is of importance to study the effect of multiple i.v. administration of PEG-liposomes on their pharmacokinetic behavior. Sterically stabilized liposomes were obtained by incorporation of PEG conjugated to distearoylethanolamine (DSPE) into the liposomal bilayers. Rats received 4 i.v. injections of small (0.12 um) PEG-liposomes at 24 or 48 h dosing intervals. Blood levels of liposomal label were determined at several time-points after injection. Our findings demonstrate that, under the chosen conditions, i.v. injection of PEG-liposomes has no effect on the blood circulation kinetics of subsequent doses of similar liposomes given at 24 or 48 h dosing intervals. These findings suggest that PEG-liposomes are suitable as drug carriers for diagnostic and therapeutic applications that require repeated i.v. injections.  相似文献   

12.
The biodistribution of long-circulating PEG-liposomes in a subcutaneous mouse model of established mixed infection abscesses was investigated to assess their possible role as drug carriers in the treatment of small, undrainable intra-abdominal abscesses. There was a 10-30-fold greater localisation of 67Ga-labelled PEG-liposomes in abscesses compared to uninfected normal skin samples. Over 3% of the injected dose (ID) of liposomes was present in the abscesses 24 h after liposome administration in contrast to 0.1% in normal skin sections. The percentage ID present in the liver, spleen and kidneys was 17%, 4% and 2% per organ respectively. Five days after liposome injection, 2% ID could still be recovered from the abscesses. Using colloidal gold-labelled PEG-liposomes, it was shown that there was a 4-fold greater density of liposome clusters in the subcutaneous tissue surrounding the capsule than in the core of the abscesses. The clusters within the abscesses were distributed evenly. We conclude that PEG-liposomes localise to a significant degree at the infection focus in our mouse model and may provide a new approach to the antimicrobial treatment of intra-abdominal abscesses.  相似文献   

13.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   

14.
Rat brain minces were used to investigate the effects of nucleotides on the metabolism of arachidonic acid in nerve tissue. Brain free fatty acids, neutral lipids and phospholipids, were radiolabeled in vivo following intracerebral injection of [3H]arachidonic acid. Minces were prepared from the radiolabeled cerebra and were incubated in a modified Krebs-Ringer buffer with and without various nucleotides. The incubation-induced accumulation of unesterified [3H]arachidonate was reduced in the presence of CDPcholine, ATP, CTP, GTP, and UTP. These nucleotides inhibited choline and inositol glycerophospholipid hydrolysis. They also reduced the amount of labeled diglycerides. However, CDPethanolamine had no effect on arachidonic acid metabolism in the mince preparation and CMP appeared to stimulate further hydrolysis of choline glycerophospholipids, resulting in increased accumulation of [3H]arachidonic acid and labeled diglycerides. We suggest that the production of unesterified [3H]arachidonate and labeled diglycerides is due to the involvement of more than one catabolic reaction, since the high energy nucleotides had similar effects on fatty acid accumulation, but different effects on phospholipid labeling.  相似文献   

15.
The monoclonal antibody (mAb) MOv18 binds the membrane alpha isoform of the folate receptor (FR) which is overexpressed in human ovarian carcinoma cells. Exploiting the targeting capacity of this mAb, we developed and preclinically validated a protocol for the stable labeling of the mAb with 90Y, an isotope which has shown promise in cancer radioimmunotherapy. MOv18 was derivatized with the stable macrocyclic ligand p-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid (Bz-DOTA). MOv18-Bz-DOTA conjugates were labeled with 90Y or 111In under metal-free and good laboratory practice conditions. At the optimal Bz-DOTA/mAb derivatization ratio of 4–5, conjugates maintained binding activity up to 6 months, were efficiently labeled with 90Y or 111In (mean labeling yield 85 and 64%, associated to a final mean specific activity of 74 and 37 MBq/mg) and displayed a mean immunoreactivity of 60 and 58%, respectively. The radiolabeled preparations were stable in human serum, with >97% radioactivity associated to mAb at 48 h after labeling. The ability of 90Y- and 111In-MOv18 to localize FR on tumors in vivo was analyzed in nude mice bearing tumors induced by isogenic cell lines differing only in the presence or absence of the relevant antigen [A431FR (FR-positive) and A431tMock (FR-negative)]. In vivo biodistribution in organs other than tumor was comparable in non-tumor-, A431tMock- and A431FR-bearing mice, whereas the median tumor uptake of the radiolabeled reagents, expressed as area under the curve (AUC) and maximum uptake (Umax), was significantly higher (sixfold to sevenfold) in A431FR than in A431tMock tumors (P=0.0465 and P=0.0332, respectively). Mean maximum uptake (% ID/g) for 90Y-MOv18 was 53.7 and 7.4 in A431FR and A431tMock respectively; corresponding values for 111In-Mov18 were 45.0 and 11.3. These data demonstrate the feasibility of 90Y-labeling of MOv18 without compromising antibody binding ability and the immunoreagent-specific localization in vivo on FR-expressing tumors, suggesting the suitability of 90Y-MOv18 for clinical studies.Angela Coliva and Alberto Zacchetti contributed equally to this work.  相似文献   

16.
Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.  相似文献   

17.
Two αvβ3 integrin-binding peptide conjugates containing the cyclic CisoDGRC motif, a linker, and a chelator to enable Tc-99m labeling via the fac-[99mTc(CO)3]+ core were synthesized. In vivo biodistribution studies in U87MG tumor-bear nude mice at 1 h post-injection revealed a profound effect of the linker on the clearance of the radiotracer from the blood stream. In vivo blocking studies demonstrated the selective binding to the tumors expressing αvβ3-integrin and other tissues. The HPLC analysis of urine samples collected upon necropsy showed no degradation indicating their metabolic stability. These results suggest that cyclic CisoDGRC motif could be exploited as a new αvβ3-targeting vector by an appropriate selection of a linker between the peptide and the payload to obtain optimum pharmacokinetic properties.  相似文献   

18.
A monoclonal antibody against the murine T-cell antigen Thy 1.1 was radioiodinated using N-succin-imidyl p-iodobenzoate (PIP) in an attempt to decrease deiodination of the labeled antibody. The biodistribution of the PIP labeled antibody was compared to Iodogen labeled antibody in Thy 1.1+ lymphoma bearing AKR/Cum mice, where the antibody was tumor specific, and AKR/J mice where the antibody reacted with both tumor and normal T-cells. PIP labeling resulted in decreased iodine concentrations in stomach and salivary gland as compared to Iodogen labeling. There was little difference in radioiodine concentrations between the two preparations in tumor, lymphoid tissues or other organs. These results suggest deiodination of intact antibody plays little role in the clearance of radioiodinated anti-Thy 1.1 antibody from tissues.  相似文献   

19.
Platelets pretinned with a neutral Sn(II)-2-mercaptopyridme-N-oxide (SN-MPO) were labeled with 99mTc and compared to those labeled with 99mTc-HMPAO. The conditions of labeling platelets, e.g. concentrations of platelets and Sn(II)-MPO, 99mTc in ACD-saline or ACD-plasma media, pH and incubation time, were optimized using canine platelets. Moderate labeling efficiency was obtained with 20 μg of tin(II) chloride and 30 min incubation with Sn-MPO and pertechnetate. The viability of labeled platelets was determined by platelet recovery and platelet survival times in Beagle dogs. The labeling efficiency with platelets from 43 mL of blood was 62.8 ± 7.6%. The platelet recovery was 35.7 ± 5.0% and exponential survival time was 34.6 ± 3.1 h compared to 43.3 ± 12.0% and 29.5 ± 3.3 h for 99mTc-HMPAO-labeled platelets. These values were significantly (P < 0.01) lower than 111In-labeled platelets. Biodistribution in dogs indicates lower retention in blood, spleen and liver after some initial 99mTc excretion in urine. The platelet deposition with 99mTc platelets (Sn-MPO method) on polyurethane angio-catheters was similar to 99mTc-HMPAO-labeled platelets. This study indicates that the platelets could be successfully labeled with pertechnetate in a cost-effective manner for the evaluation of thromboembolic complications.  相似文献   

20.
Abstract

An efficient procedure for the preparation of oligonucleotides carrying a mono-N-substituted azamacrocycle and its radiolabeled complex with Cu-64 and Tc-99m is reported. The new derivatives are of potential interest for Positron Emission Tomography and Single Photon Emission Tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号