首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus‐mediated gene transfer efficiency.

Retrovirus‐mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with β‐galactosidase (β‐Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm2 to 4.0 watts/cm2) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated.

Below 1.0 watts/cm2 and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm2 of an ultrasound resulted in significant increases in retrovirus‐mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6‐fold, 4.8‐fold, 2.3‐fold, and 3.2‐fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, β‐Gal activities were also increased by the retrovirus with ultrasound exposure in these cells.

Adjunctive ultrasound exposure was associated with enhanced retrovirus‐mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid‐DNA‐, but also retrovirus‐mediated gene transfer.  相似文献   

2.
Abstract

Cationic liposomes have been studied as a potential carrier for delivering genes to cells for the purpose of gene therapy. This report summarizes our efforts to characterize the in vivo expression of transgene delivered by cationic liposomes via intravenous administrtion. Using a CMV driven gene expression system containing cDNA of luciferase or green fluorescence protein gene as a reporter and two commonly used cationic lipids, 2, 3-dioleoyloxypropyl-1-trimethyl ammonium chloride (DOTMA) and 2, 3-dioleoyloxyl-1-trimethylammonium propanyl chloride (DOTAP), we demonstrate that a significant level of gene expression can be obtained in different organs including the lung, heart, spleen, liver and kidneys following intravenous administration in the mouse. Our finding show that the transfection efficiency of cationic liposomes is determined by the structure of the cationic lipids, the lipid composition of liposomes and cationic lipid to DNA ratio. Furthermore, gene expression was short in duration, peaked between 4-24 hours post injection, and dropped to less than 1% of the peak level within a 4 day period. Experiments with repeated injections revealed that cells initially transfected by the first transfection were not fully responsive to the subsequent second transfection for approximately 14 days.  相似文献   

3.
Abstract

Cationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine?. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection.  相似文献   

4.
BACKGROUND: Non-viral gene transfer efficiency is low as compared to viral vector systems. Here we describe the discovery of new drugs that are capable of enhancing non-viral gene transfer into mammalian cells using a novel two-stage screening procedure. METHODS: First, potential candidates are preselected from a molecular library at various concentrations by a semi-automated yeast transfection screen (YTS). The maximal transfection efficiency of every positive drug is subsequently determined in independent experiments at the optimal concentration and compared to the inhibitory effect of the drug on cell growth (IC50). In a subsequent mammalian cell transfection screen (MTS), the maximal transfection efficiency and the IC50 are determined for all preselected drugs using a human cell line and a luciferase reporter gene construct. RESULTS: Employing our novel system we have been able to identify a new class of transfection enhancers, the tricyclic antidepressants (i.e. doxepin, maprotiline, desipramine and amoxapine). All positive drugs enhanced gene transfer in both yeast and human cell lines, but lower concentrations were sufficient for mammalian cells. With a triple combination of doxepin, amoxapine and chloroquine we obtained a transfection efficiency that exceeded that of chloroquine, one of the best-known transfection enhancers of mammalian cells, by nearly one order of magnitude. CONCLUSIONS: Non-viral gene transfer efficiency can be increased significantly using new transfection enhancers that are identified by a novel, semi-automated two-stage screening system employing yeast cells in the first and specific human target cells in the second round.  相似文献   

5.
Abstract

A simple strategy for designing a cancer immunotherapeutic system involves modification of tumor cells from tumor-bearing animals in vivo in such a way that the host can evoke a specific immune response against them. We have expressed allogeneic class I major histocompatibility complex (MHC) molecules on tumor cells, through ex vivo DNA-mediated gene transfer. These molecules are potent immuno-modulators for the stimulation of strong immune reactions against certain malignancies. In order to achieve efficient gene delivery to tumor cells in vivo we have compared the efficiencies of gene transfer into mammalian tumor cells by the biolistic particle delivery system and cationic liposomes. In this report, we have demonstrated that cationic liposomes prepared by DC-chol and DOPE gives the best efficiency of transfection for tumor cells in vivo. We also showed that a strong anti-H-2Kb allo-reactive cytotoxic T lymphocyte (CTL) response could be generated following in vivo immunization of AKR/J mouse spleens with the H-2Kb gene and DC-chol cationic liposomes. The direct immunization of mouse spleens to induce cell-mediated immunity against exogenous antigens may allow alternative treatment strategies for cancer immunotherapy.  相似文献   

6.
PurposePrenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents.MethodsAP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells.ResultsAll the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation—considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination.ConclusionObtained results indicate that APs have a potential as non-viral vectors for cell transfection.  相似文献   

7.
Background:One of the major challenges in gene therapy is producing gene carriers that possess high transfection efficiency and low cytotoxicity (1). To achieve this purpose, crystal nanocellulose (CNC) -based nanoparticles grafted with polyethylenimine (PEI) have been developed as an alternative to traditional viral vectors to eliminate potential toxicity and immunogenicity.Methods:In this study, CNC-PEI10kDa (CNCP) nanoparticles were synthetized and their transfection efficiency was evaluated and compared with linear cationic PEI10kDa (PEI) polymer in HEK293T (HEK) cells. Synthetized nanoparticles were characterized with AFM, FTIR, DLS, and gel retardation assays. In-vitro gene delivery efficiency by nano-complexes and their effects on cell viability were determined with fluorescent microscopy and flow cytometry.Results:Prepared CNC was oxidized with sodium periodate and its surface cationized with linear PEI. The new CNCP nano-complex showed different transfection efficiencies at different nanoparticle/plasmid ratios, which were greater than those of PEI polymer. CNPC and Lipofectamine were similar in their transfection efficiencies and effect on cell viability after transfection.Conclusion:CNCP nanoparticles are appropriate candidates for gene delivery. This result highlights CNC as an attractive biomaterial and demonstrates how its different cationized forms may be applied in designing gene delivery systems.Key Words: Crystal Nanocellulose, Gene transfection, Nanoparticle, Nano-complex  相似文献   

8.

Background

Gene therapy strategies for the treatment of vascular disease such as the prevention of post‐angioplasty restenosis require efficient, non‐toxic transfection of vascular cells. In vitro studies in these cells contribute to vector development for in vivo use and for the evaluation of genes with therapeutic potential. The aim of this project was to evaluate a novel synthetic vector consisting of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), which combine to form the LID vector complex.

Methods

Cultures of porcine smooth muscle cells and endothelial cells were established and then transfected with the LID vector, using the reporter genes luciferase and green fluorescent protein and the metalloprotease inhibitor TIMP‐1.

Results

The LID vector system transfected primary porcine vascular smooth muscle cells and porcine aortic endothelial cells with efficiency levels of 40% and 35%, respectively. By increasing the relative DNA concentration four‐fold, incubation periods as short as 30 min achieved the same levels of luciferase transgene expression as 4 h incubations at lower DNA concentrations. The transfection did not affect cell viability as measured by their proliferative potential. Serum levels of up to 20% in the transfection medium had no adverse affect on the efficiency of transfer and gene expression in either cell type. Transfections with the cDNA for TIMP‐1 produced protein levels that peaked at 130 ng/ml per 24 h and persisted for 14 days at 10 ng/ml per 24 h.

Conclusion

This novel vector system has potential for studies involving gene transfer to cardiovascular cells in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

9.
Abstract

Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level.  相似文献   

10.
Functional characterization of human genes is one of the most challenging tasks in current genomics. Owing to a large number of newly discovered genes, high-throughput methodologies are greatly needed to express in parallel each gene in living cells. To develop a method that allows efficient transfection of plasmids into adherent cells in spatial- and temporal-specific manners, we studied electric pulse-triggered gene transfer using a plasmid-loaded electrode. A plasmid was loaded on a gold electrode surface having an adsorbed layer of poly(ethyleneimine), and cells were then plated directly onto this modified surface. The plasmid was detached from the electrode by applying a short electric pulse and introduced into the cells cultured on the electrode, resulting in efficient gene expression, even in primary cultured cells. The location of transfected cells could be restricted within a small area on a micropatterned electrode, showing the versatility of the method for spatially controlled transfection. Plasmid transfection could also be performed in a temporally controlled manner without a marked loss of the efficiency when an electric pulse was applied within 3 days after cell plating. The method described here will provide an efficient means to transfer multiple genes, in parallel, into cultured mammalian cells for high-throughput reverse genetics research.  相似文献   

11.
Abstract

The use of cationic liposomes is one of the main approaches currently investigated to introduce into a cell a gene with therapeutic properties. This study presents in vitro results obtained with a new family of gene transfer agents, the phosphonolipids. We have synthesized 37 members of this family and optimized the conditions of in vitro gene transfer targeted at a lung epithelial cell line (CFT1 cells) by using a reporter gene (β-galactosidase). Two quantitative tests, a CPRG1 (Chlorophenol red galactopyranoside) test and a Flow cytometric assay (FACS-Gal1 assay), have been used to determine the percentage of transfected cells. The cationic phosphonolipids were tested alone or formulated with 50% DOPE1 (Dioleoylphosphatidylethanolamine) (w:w). The results obtained with the CPRG test led us to select 7 compounds that were more efficient than the commercialized lipids Lipofectin, Lipofectamine and Transfectam. The transfer kinetics of the transgene were studied and showed that more than 20 % of cells were still positive at day 7 after transfection.  相似文献   

12.
Abstract

Cationic liposomes are non-viral gene transfer vectors for in vitro and in vivo experiments. In the present studies, we investigated whether a disulfide linkage in a cationic lipid was reducible by cell lysate resulting in the release of plasmid DNA and enhanced gene transfection. We also investigated if the differences in transgene production were from differences in total amount of cellular associated plasmid DNA. We systematically compared the gene transfection of disulfide bond containing-cationic lipid, 1', 2'-dioleoyl-sn-glycero-3'-succinyl-2-hydroxyethyl disulfide ornithine conjugate (DOGSDSO), its non-disulfide-containing analog, 1', 2'-dioleyl-sn-glycero-3'-succinyl-1, 6-hexanediol ornithine conjugate (DOGSHDO), 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP). Two transgene reporter systems (i.e., luciferase and green fluorescent protein (GFP)) were used to address transgene transgene expression and transgene efficiency. Experiments with the luciferase expression plasmid resulted in transgene activity up to 11 times greater transgene production for the disulfide containing lipid in at least two different cell lines, COS 1 and CHO cells. When transgene expression was determined by GFP activity, DOGSDSO liposomes were four times greater than the non-disulfide lipid or positive control (DOTAP) liposomes. By quantifying nucleic acid uptake by flow cytometry it was also demonstrated that increase expression was not solely from an increase in cellular plasmid DNA accumulation. These results demonstrate that cationic lipids containing a disulfide linkage are a promising method for gene transfer.  相似文献   

13.
目的:构建神经生长因子(NGF)的慢病毒表达载体,并观察其转染人脐带间充质干细胞后的表达情况。方法:采用实时定量PCR(RT-PCR)方法获取NGF基因编码片段,并将构建的慢病毒载体质粒与包装质粒和包膜质粒共转染293T细胞,包装生产慢病毒。应用相同滴度的慢病毒转导等量间充质干细胞(MSCs),观察转染后细胞的生长形态及生长曲线,再采用RT-PCR、Western Blot方法检测NGF m RNA、蛋白质的表达水平。结果:经PCR、酶切和测序结果证明成功构建NGF基因重组慢病毒载体。同时NGF基因重组慢病毒载体能够成功转染人脐带间充质干细胞,转染率达95.35%,转染后干细胞在NGF m RNA及蛋白质的表达方面较对照组明显升高,同时经倒置显微镜观察及生长曲线实验证实转染后干细胞的生长与对照组相比无明显差异。结论:重组NGF的慢病毒表达载体能够高效的转染人脐带间充质干细胞,基因转染后干细胞的增殖分化能力与未转染细胞差异无统计学意义,可作为一种高效的干细胞转染方法。  相似文献   

14.
Purpose: Previously, we reported that the cationic liposomes composed of a cationic cholesterol derivative, cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (termed LP-C), could deliver small interfering RNAs (siRNAs) with high transfection efficiency into tumor cells. In this study, to develop a liposomal vector for siRNA delivery in vivo, we prepared the poly(ethyleneglycol) (PEG)-modified cationic liposomes (LP-C-PEG) and evaluated their transfection efficiency in vitro and in vivo.

Materials and methods: We prepared LP-C-PEG/siRNA complexes (LP-C-PEG lipoplexes) formed in water or 50?mM NaCl solution, and evaluated their siRNA biodistribution and gene silencing effect in mice after intravenous injection.

Results: LP-C-PEG lipoplexes strongly exhibited in vitro gene silencing effects in human breast tumor MCF-7 cells as well as LP-C lipoplexes. In particular, formation of LP-C and LP-C-PEG lipoplexes in the NaCl solution increased the cellular association. When LP-C-PEG lipoplexes with Cy5.5-labeled siRNA formed in water or NaCl solution were injected into mice, accumulation of the siRNA was observed in the liver. Furthermore, injection of LP-C-PEG lipoplexes with ApoB siRNA could suppress ApoB mRNA levels in the liver and reduce very-low-density lipoprotein/low-density lipoprotein levels in serum compared with that after Cont siRNA transfection, although the presence of NaCl solution in forming the lipoplexes did not affect gene silencing effects in vivo.

Conclusions: LP-C-PEG may have potential as a gene vector for siRNA delivery to the liver.  相似文献   

15.
In order to develop improved synthetic gene transfer vectors, we have synthesized bifunctional peptides composed of a DNA binding peptide (P2) and ligand peptides selected by the phage display technique on tracheal epithelial cells. We have evaluated the capacity of these peptides to enhance the gene transfer efficiency of the cationic lipid DOTAP to the mouse lung. To optimize the in vivo transfection efficiency, we first compared the efficiency of DOTAP to transfect the lung by either intravenous injection or aerosolization. We then tested DNA/Peptide/DOTAP complexes formed at different Peptide/DNA and DOTAP/DNA charge ratios. Under optimal conditions, precompaction of DNA by peptide P2 gave a higher expression in the mouse lung using the luciferase reporter gene than DOTAP/DNA complexes. A further increase of transfection efficiency was obtained with the bifunctional peptide P2-9. Experiments performed with the GFP reporter gene showed expression in the alveolar parenchyme.  相似文献   

16.
17.
Koh  Vivien  Kwan  Hsueh Yin  Tan  Woei Loon  Mah  Tzia Liang  Yong  Wei Peng 《BMC genomics》2016,17(13):1029-96
Background

Gemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients. Our previous studies demonstrated that POLA2 + 1747 GG/GA single nucleotide polymorphism (SNP) improves differential survivability and mortality in NSCLC patients. Here, we determined the association between POLA2 and gemcitabine treatment in human lung cancer cells.

Results

Human PC9, H1299 and H1650 lung cancer cell lines were treated with 0.01-100 μM gemcitabine for 72 h. Although all 3 cell lines showed decreased cell viability upon gemcitabine treatment, H1299 was found to be the most sensitive to gemcitabine treatment. Next, sequencing was performed to determine if POLA2 + 1747 SNP might be involved in gemcitabine sensitivity. Data revealed that all 3 cell lines harbored the wild-type POLA2 + 1747 GG SNP, indicating that the POLA2 + 1747 SNP might not be responsible for gemcitabine sensitivity in the cell lines studied. Silencing of POLA2 gene in H1299 was then carried out by siRNA transfection, followed by gemcitabine treatment to determine the effect of POLA2 knockdown on chemosensitivity to gemcitabine. Results showed that H1299 exhibited increased resistance to gemcitabine after POLA2 knockdown, suggesting that POLA2 does not act alone and may cooperate with other interacting partners to cause gemcitabine resistance.

Conclusions

Collectively, our findings showed that knockdown of POLA2 increases gemcitabine resistance in human lung cancer cells. We propose that POLA2 may play a role in gemcitabine sensitivity and can be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis.

  相似文献   

18.
Abstract

To evaluate the base-pairing properties and mutagenicity of deoxyxanthosine in DNA, the modified base was incorporated into a synthetic c-Ha-ras gene and a DNA transfection experiment was done. The ras gene containing deoxyxanthosine showed very high focus-forming activity. Analysis of the genes from transformants showed almost exclusively a transition of G to A. These results indicate that dTMP was preferentially incorporated at the site opposite to deoxyxanthosine, and deoxyxanthosine can induce G to A transitions in mammalian cells.  相似文献   

19.
Cationic liposome-DNA (lipoplexes) or polymer-DNA (polyplexes) complexes have been used to deliver therapeutic genes, both in vitro and in vivo. However, gene transfer by these non-viral vectors is usually inhibited by biological milieu. A relatively high efficiency of transfection could be achieved in human oral cancer cells transfected with the polycationic liposome, Metafectene, and the polyamine reagent, GeneJammer, in the presence of 60% fetal bovine serum (FBS) (Konopka et al., Cell. Mol. Biol. Lett. 10 (2005) 455–470). Here, we examined the efficacy of these vectors to deliver β-galactosidase (β-gal), luciferase and Herpes Simplex Virus thymidine kinase (HSV-tk) genes to SCCVII murine squamous cell carcinoma cells, which are used to generate an orthotopic murine model of oral cancer. We also evaluated the hydrodynamic size and zeta potential of the vectors and the effect of FBS and mouse serum (up to 60%) on the size of Metafectene and GeneJammer complexes with the pCMV.Luc plasmid. Our results indicate that Metafectene and GeneJammer are highly effective in transfecting SCCVII cells. Approximately 60–70% of SCCVII cells transfected with pCMV.lacZ were positive for β-gal staining. The expression of β-galactosidase was essentially not affected by serum. Mouse serum (20–60%) reduced both Metafectene-and GeneJammer-mediated luciferase expression by ∼30–45%, while FBS did not affect transfection efficiency. The delivery of the HSV-tk gene by Metafectene or GeneJammer in the presence of 0% or 60% FBS, followed by GCV treatment for 6 days, resulted in over 90% cytotoxicity. The mean diameters of the DNA complexes of Metafectene and GeneJammer decreased significantly as a function of the serum concentration. The reduction in the size of the lipoplexes and polyplexes by serum was essentially not inhibitory to transfection of SCCVII cells. This is in contrast to previous hypotheses that serum-induced decrease in the size of lipoplexes is the primary cause of serum inhibition of transfection.  相似文献   

20.

Background

We have recently developed a safe and efficient gene transfer system using a laminin–DNA–apatite composite layer. The objectives of the present study were to fully characterize and optimize the laminin–DNA–apatite composite layer in relation to the efficiency of gene transfer and to demonstrate the feasibility of the composite layer in the induction of cell differentiation.

Methods

The laminin–DNA–apatite composite layer was prepared under various conditions. The efficiency of gene transfer on the resulting composite layer was evaluated using luciferase and ß‐galactosidase gene expression assay systems. A laminin–DNA–apatite composite layer, prepared under the optimized condition using a plasmid including cDNA of nerve growth factor (NGF), was then applied to the neuron‐like differentiation of PC12 cells.

Results

The laminin content of the laminin–DNA–apatite composite layer was found to be a dominant factor improving the efficiency of gene transfer rather than the DNA content. The cell adhesion property of laminin in the composite layer should be responsible for the improvement in efficiency of gene transfer because the immobilization of albumin without the cell adhesion property in a DNA–apatite composite layer had no effect on the efficiency of gene transfer. A laminin–DNA–apatite composite layer, prepared under the optimized condition using a plasmid including cDNA of NGF, successfully induced the neuron‐like differentiation of PC12 cells.

Conclusions

The present gene transfer system, with the potential to control cell differentiation and having features of safety and relatively high and controllable efficiency, would be a useful tool for tissue engineering applications and the production of transfection microarrays. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号