首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Effect of macrophage elimination using liposomal dichloromethylene diphosphonate (C12MDP)1 on tissue distribution of different types of liposomes was examined in mice. Intravenously administration into mice with CI2MDP encapsulated in liposomes composed of phosphatidylcholine, cholesterol and phosphatidylserine exhibits a temporary blockade of liver and spleen function for liposome uptake. At a low dose of 90 (ig/mouse, the liposome uptake by the liver was significantly decreased. Such decrease was accompanied by an increase in liposome accumulation in either spleen or blood depending on liposome composition and size. Direct correlation between the administration dose of liposomal CI2MDP and the liposome circulation time in blood was also obtained even for liposomes with an average diameter of more than 500 nm. These results indicate that temporary elimination of macrophages of the liver and spleen using liposomal CI2MDP may prove to be useful to enhance the drug delivery efficiency of liposomes.  相似文献   

2.
Abstract

Long-circulating liposomes can be prepared by coating liposome surface with a hydrophilic layer of oligosaccharides, glycoproteins, polysaccharides and synthetic polymers in order to make liposomes “invisible” for scavenger cells of the mononuclear phagocyte system. Incorporation of lipid-anchored poly(ethylene glycol) in liposome bilayer allows to prolong its circulation at least tenfold. Various designs of glycolipid- and polymer-based liposomes are presented, possible mechanisms of action are discussed; potential of these liposomes for drug targeting is presented.  相似文献   

3.
Abstract

Several approaches to Improve Gd-containing liposomes as magnetic resonance contrast medium for the visualization of lymph nodes are discussed. The modification of the liposome surface with a polymer was chosen as a chemical solution to control the contrast enhancement properties of the medium. It was found that liposome modification with Gd-diethylenetriaminepentaacetic acid (DTPA)-polylysine-based chelating polymer can increase several fold the metal load per vesicle, while surface modification with polyethylene glycol (PEG) might lead to the increased relaxivity of paramagnetic vesicles. Examples are given on how chemical modification of the liposome surface can improve the performance of Gd-containing liposomes in the visualization of lymph nodes.  相似文献   

4.
ABSTRACT

Scintigraphic imaging is a valuable tool for the development of liposome-based therapeutic agents. It provides the ability to non-invasively track and quantitate the distribution of liposomes in the body. Liposomes labeled with technetium-99 m (99mTc) are particularly advantageous for imaging studies because of their favorable physical characteristics. Examples of how scintigraphic imaging studies have contributed to the evaluation and development of a variety of liposome formulations will be presented. These include liposomes for targeting processes with inflammation associated increased vascular permeability such as healing bone fractures and viral infections; liposomes for intraarticular delivery; and liposomes for delivery of agents to lymph nodes located in the extremities, the mediastinum and the peritoneum. Scintigraphic studies of liposome distribution are very informational and often suggest new drug delivery applications for liposomes.  相似文献   

5.
Abstract

Cationic and anionic liposomes have been prepared by extrusion from dipalmitoylphosphatidylcholine (DPPC) and its mixtures with cholesterol and dimethyldioctadecyltrimethylammonium bromide (DDAB) and with phosphatidylinositol (PI) respectively covering a range of composition from 0 to 19 mole % DDAB and PI. The adsorption of liposomal lipid from the liposome dispersion onto particles of silica and titanium dioxide in suspension has been studied as a function of liposome composition and concentration. The adsorption isotherms have been fitted using a Langmuir equation from which the binding constants and maximum surface coverage were obtained. The Gibbs energies of adsorption for the cationic liposomes were on average -61.0 ± 2.1 kJ mol?1 (on silica) and -50.6 ± 2.9 kJ mol?1 (on titanium dioxide). On average saturation adsorption is equivalent to 3 to 10 lipid monolayers on silica and 3 to 7 on titanium dioxide. Using liposomes encapsulating D-glucose it is demonstrated that there is almost no release of glucose on adsorption of the lipid, indicating that the liposomes are adsorbed intact to form a liposome monolayer on the particle surfaces. Adsorption of intact liposomes to form a close-packed liposome monolayer of solid supported vesicles (SSV) is shown to be equivalent to on average 7.0 ± 0.2 phospholipid monolayers. The SSVs are shown to have increased stability to disruption by surfactants and when carrying the oil-soluble bactericide, Triclosan?, to be capable of inhibiting the growth of oral bacteria from immobilised biofilms.  相似文献   

6.
Abstract

Those who cannot remember the past are condemned to repeat it.—George Santayana

I am fortunate to have entered the liposome research field in its infancy. In that “golden age” of liposome research, scientific advances related to lipid vesicles appeared in the literature on a regular basis and there was little danger of repeating a study because there was so little published. Many of the potential uses of liposomes in drug delivery that have come to be, were discussed in two creative and prescient articles published in 1976 in the New England Journal of Medicine by Gregory Gregoriadis (1). At liposome/ drug carrier meetings, discussions raged over materials, mechanisms, models, methods and structures. My colleagues and I published a few papers dealing with liposome preparation and extrusion through polycarbonate membranes to form defined diameter populations of liposomes (2-4). The extrusion method is widely used and like the original Bangham method (5) for making MLV, it has become so a part of making liposomes that it is no longer cited. For those entering the liposome field the failure to correctly attribute is understandable, given the vast number of liposome publications (Table 1) that have appeared over the ensuing years.  相似文献   

7.
Abstract

Two strategies for increasing liposome stability in vivo are described in this review. The first strategy involves the encapsulation of liposomes within polymeric microcapsules of alginate-poly(L-lysine) that retained the liposomes inside but allowed the outward diffusion of proteins of 100 kDa or less, once they were released from the encapsulated liposomes. In vivo studies revealed that the microencapsulated liposome systems (MELs) extended the delivery of a model antigen, bovine serum albumin (BSA), for more that 80 days, resulting in the prolonged production of high levels of antigen-specific antibodies. The antibody levels were higher that those obtained with rats injected with BSA in complete Freund's adjuvant, or in liposomes. The unique construction of MELs enabled also the enzymatically-triggered pulsatile delivery of proteins from encapsulated liposomes, which was not possible before with liposomes.  相似文献   

8.
Abstract

The hypothesis is suggested describing the molecular mechanism of protective action of poly(ethylene glycol) on liposomes in vivo on the basis of polymer properties in solvent. The protective layer of polymer on the liposome surface is considered as a “cloud” of possible conformations of macromolecules. If polymer is water-soluble and has flexible main chain, the density of this cloud is high enough to prevent the interaction of opsonins with liposome. At the same time, certain optimal concentration of the protective polymer can be found, when more loose areas in polymeric “clouds” can be used for the immobilization of antibodies on liposomes. As a result, long-circulating targeted liposomes can be obtained.  相似文献   

9.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

10.
Abstract

We investigated the intrahepatic distribution in rats of liposomes of 85 or 130 nm diameter, which were sterically stabilized with a polyethylene glycol) derivative of phosphatidylethanolamine (PEG-PE) so as to increase their circulation time in blood. Various times after intravenous injection of radiolabeled ([3H-]cholesterylether) liposomes, parenchymal and non-parenchymal cells of the liver were isolated and their radioactivity content was determined. Control liposomes of 85 nm without PEG-PE distributed in an approximately 80:20 ratio to hepatocytes (H) and macrophages (M), respectively; the 130-nm control liposomes showed a 50:50 H/M distribution. Incorporation of PEG-PE reduced the rate of total liver uptake about 4-fold for liposomes of either size and shifted the H/M ratio to 60:40 for the smaller vesicles and to 40:60 for the larger ones. For both liposome sizes, PEG-PE apparently causes a shift in intrahepatic distribution in favor of the macrophages. It is concluded that PEG-PE has a stronger inhibitory effect on liposome uptake by hepatocytes than on uptake by macrophages. Attempts to shift liposome uptake more in favor of hepatocytes, by incorporation of lactosylceramide, failed. This compound, although causing an increase in hepatic uptake, particularly for the 130-nm liposomes, shifted the H/M ratio further towards the macrophages. We conclude that the galactose moiety of the glycolipid is sufficiently exposed on the surface of (PEG-PE)-containing liposomes to allow interaction with the galactose-binding lectin at the surface of the liver macrophage and that the extent of exposure is dependent on vesicle size.  相似文献   

11.
Abstract

Desmopressin-containing liposome formulations have been developed for intranasal administration previously. Positively charged liposomes were found to be an efficient delivery system for desmopressin. In this study, stability of the loaded desmopressin in positively charged liposomes was further investigated. Comparison of the stability of desmopressin in solution and liposomes was made. Degradation of desmopressin was shown to follow a pseudo-first-order reaction. Degradation of desmopressin in both solution and liposomes demonstrated the same kinetic behavior and exhibited no significant difference in half-lives. Similar v-shape pH-rate profile was found for desmopressin degradation in solution and liposomes. At pH 4.0, the inflection point of the v-shape pH-rate curve, the reaction rate of desmopressin was lowest and the stability was greatest. The stability of lipid ingredients of dioleoylphosphatidylcholine (DOPC), cholesterol (C), and stearylamine (S) in the liposome dispersion at pH 4.0 was studied. Results demonstrated that DOPC, C, and S were relatively stable in the liposome structure when formulated with desmopressin. The degradation of desmopressin in solution and liposomes in the presence of α-chymotrypsin was investigated. A longer half-life for desmopressin in liposomes than in solution was observed. It was suggested that desmopressin was protected by the liposomes against α-chymotrypsin digestion.  相似文献   

12.
Abstract

In an earlier communication (1) we have proposed a formalism which permitted a quantitative evaluation of the shrinkage and swelling of liposomes under osmotic-diffusional stress as inferred from spectrophotometric measurements. In this paper the formalism has been extended to examine the behaviour of proteoliposomes containing aqueous channels formed by intercalation of gap junctional proteins into the membrane bilayer. Subtle deviations elicited by the proteoliposomes from an idealized liposome are attributed to the heterogeneity in the preparations. With appropriate corrections spectrophotometric measurements permit a quantitative analysis of differential permeabilities of solutes.  相似文献   

13.
Abstract

Phospholipid vesicle aggregation is usually mediated by phospholipid-binding proteins such as the annexins in a Ca2+-dependent manner. Here, we describe aggregation of unilamellar liposomes by trypsin and papain in the absence of cations. Cations including Ca2+ inhibited the aggregation. While both trypsin and papain promoted aggregation of liposomes made of phosphatidylcholine and phosphatidylglycerol, only papain elicited aggregation of liposomes made of exclusively phosphatidylcholine. Incubation of trypsin for 30 min at 37°C destroyed its liposome aggregating activity, similar treatment had no effect on papain's. Chymotrypsin and pepsin had no liposome aggregating activity.  相似文献   

14.
Abstract

An in vitro liposome-cell association system has been developed that will allow the study of uptake and metabolism of liposomes by cultured cells at nanomolar lipid concentrations. The fate of cell associated liposomes is followed through the liposome encapsulated marker, methotrexate. Detection is based on the inhibition of dihydrofolate reductase by methotrexate, after its release from cells through boiling. Methotrexate in phospha-tidylglycerol (PG) liposomes is taken up by cells and then subsequently lost from the cells. Uptake is partially blocked by monensin. Loss from the cells is blocked by metabolic inhibitors, monensin, ammonium chloride, and chloroquine. Methotrexate in distearoylphosphatidylglycerol (DSPG) liposomes is taken up by cells slowly, and there is minimal lost of methotrexate after uptake. Pulse studies show that metabolism of PG liposomes after endocytosis is occurring at a much higher rate than that of DSPG liposomes, and substantial retention of encapsulated methotrexate occurs for both liposome compositions.  相似文献   

15.
Abstract

Changing liposome physical, properties by designing vesicles with a hydrophilic/ steric barrier at the liposome surface has resulted in altered pharmacokinetics of these liposomes leading to increased blood levels of drug-carrying liposomes and reduced uptake by the RES. This discovery opens up new therapeutic opportunities for liposome-based drug delivery using hydrophilic coatings. Unravelling the mechanism of action of such coatings is an exciting challenge that will facilitate optimization of liposome surfaces for specific drug delivery applications. This article puts forward a series of assumptions and hypotheses to characterize the way hydrophilic coatings extend the plasma half-life of sterically - coated liposomes, to begin to explain how a steric barrier at the surface of liposomes may act. These speculations are examined in the light of current experimental evidence including that from non-liposome systems, and a model for particle removal from the circulation is proposed.

Introduction

Since the days when liposomes were first conceived for drug delivery, ways have been sought to increase the length of time injected vesicles circulate in the body (1). In the mid-eighties, manipulation of the liposomal lipid composition increased the amount of time liposomes remained in the circulation for a well-defined but relatively limited design of  相似文献   

16.
Abstract

Emulsification of liposomes with incomplete Freund's adjuvant, a water-in-oil emulsion, resulted in the formation of stable emulsions containing a large fraction of intact liposomes. Although some loss of liposome integrity and loss of emulsion stability did occur at certain concentrations of liposomes, based on the release of trapped glucose, it was determined that formulations of Freund's adjuvant containing liposomes could be produced that still retained a considerable liposomal permeability barrier for at least 7 days.  相似文献   

17.
Abstract

Our studies on the targeting of liposomes and liposome-associated pharmaceuticals within the cardiovascular system are reviewed. The delivery of diagnostic and therapeutic agents in plain liposomes, immunoliposomes, long-circulating liposomes and long-circulating immunoliposomes into the sites of vascular injuries and myocardial infarction is discussed. In vitro, ex vivo, and in vivo experiments present a general view on the advantages and limitations of using liposome-mediated targeting. Liposomes capable of targeting pathological areas of the blood vessel wall both, in vitro and ex vivo are described, as well as liposome able to be internalized by normal endothelial cells. Liposome-mediated drug targeting to compromised myocardium is reviewed with a primary impact on liposomes with anti-cardiac myosin antibodies. Targeted visualization of myocardial infarction with diagnostic liposomes is discussed. Efficient accumulation of long-circulating immunoliposomes in the infarct zone is demonstrated, and a relative importance of different variables, such as liposome size, targetability, and prolonged circulation time, for target accumulation is analyzed. The use of immunoliposomes for targeted sealing of hypoxia-caused damages in plasmic membranes of cardiocytes is considered as a new approach in the therapeutic use of liposomes.  相似文献   

18.
Abstract

This overview will discuss our studies of liposomes aerosols to treat diseases of the lung and will entail (i) formulation and characterization of liposome aerosols, including dry liposome powder aerosols, (ii) modulation of the pharmacokinetic profile of liposomal drugs delivered by aerosol or intratracheal instillation, (iii) liposome-alveolar macrophage interactions in vitro and in vivo, and (iv) safety of liposome aerosols in vivo in mice, sheep and healthy human volunteers. Water-soluble agents can be retained in liposomes during aerosolization with air-pressure nebulizers within certain limitations of liposome composition, size, and operating conditions. Dry powder liposome aerosols have been formulated and deliver water-soluble encapsulated substances efficiently. Pharmacokinetic profiles of liposomal drugs delivered via intratracheal instillation exhibit typical slow release plasma profiles indicating that the carrier is the rate-limiting barrier for release. Accordingly, pulmonary mean residence times are significantly prolonged and systemic concentrations remain low. Liposomes do not inhibit the phagocytic activity of alveolar macrophages in vitro and in vivo, have no apparent histopathologic effects on lung architecture even after chronic administration, and do not alter dynamic compliance, lung resistance, paO2 and paCO2 in awake, unanesthetized sheep and in healthy human volunteers. In conclusion, liposomes are a promising innocuous aerosol delivery system for drugs to achieve prolonged localized drug concentrations in the lung or intracellular drug targeting to alveolar macrophages.  相似文献   

19.
目的:对透明质酸(HA)靶向绿原酸(CA)脂质体(HA-CA脂质体)进行处方筛选,以及对U14宫颈癌小鼠的抑制作用实验。方法:筛选制备HA-CA脂质体的方法,并以磷脂比、药脂比、PBS的p H为单因素考察指标通过正交实验筛选最优处方;采用透析袋法考察HA-CA的体外释放;Bal b/c小鼠右腋皮下接种U14宫颈癌瘤株,连续尾静脉注射给药14 d后,摘取瘤体称重,并计算肿瘤生长抑制。结果:采用薄膜分散法制备脂质体,最优处方为磷脂比为4:1,药脂比为1:30,PBS的p H为7.4。HA-CA脂质体与CA脂质体释放曲线基本一致,都具有一定的缓释效果。48 h时,HA-CA脂质体和CA脂质体的累计释放度分别为78.39%、83.01%。HA-CA脂质体对U14宫颈癌小鼠的抑瘤率为60.39%,与阳性对照组环磷酰胺相当,高于CA和CA脂质体。结论:HA-CA脂质体由于其具有主动靶向配体HA的修饰,使其抑制U14宫颈癌裸鼠的效果明显高于CA和CA脂质体。  相似文献   

20.
Abstract

Our recent in vivo studies have investigated the surface adsorption property of various circulating liposomes to blood proteins, and have related this property to liposome clearance behavior. In particular, we have investigated liposomes composed of different charged or neutral lipids, fatty acyl chain length and saturation, and cholesterol content. From these studies an apparent inverse relationship between the amount of blood protein that associates with large unilamellar vesicles and the circulation half-lives of the liposomes is observed, indicating that protein-mediated liposome clearance mechanisms are dominant. Furthermore, by comparing the protein profiles of rapidly cleared liposomes with liposomes exhibiting enhanced circulation times, key blood proteins have been identified and implicated in the clearance process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号