首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to develop niosomal gel as a transdermal nanocarrier for improved systemic availability of lopinavir. Niosomes were prepared using thin-film hydration method and optimized for molar quantities of Span 40 and cholesterol to impart desirable characteristics. Comparative evaluation with ethosomes was performed using ex vivo skin permeation, fluorescence microscopy, and histopathology studies. Clinical utility via transdermal route was acknowledged using in vivo bioavailability study in male Wistar rats. The niosomal formulation containing lopinavir, Span 40, and cholesterol in a molar ratio of 1:0.9:0.6 possessed optimally high percentage of drug entrapment with minimum mean vesicular diameter. Ex vivo skin permeation studies of lopinavir as well as fluorescent probe coumarin revealed a better deposition of ethosomal carriers but a better release with niosomal carriers. Histopathological studies indicated the better safety profile of niosomes over ethosomes. In vivo bioavailability study in male Wistar rats showed a significantly higher extent of absorption (AUC0→∞, 72.87 h × μg/ml) of lopinavir via transdermally applied niosomal gel as compared with its oral suspension. Taken together, these findings suggested that niosomal gel holds a great potential of being utilized as novel, nanosized drug delivery vehicle for transdermal lopinavir delivery.KEY WORDS: ethosomes, lopinavir, niosomes, transdermal  相似文献   

2.
Context: The aim of this work was to evaluate the suitability of ethosomes as carriers for the topical application of triptolide in a rat model of erythema.

Objective: We determined the optimal conditions for preparing ethosomes, and we measured their vesicle size by a laser particle-size analyzer and the efficiency of entrapment of triptolide by ultracentrifugation.

Methods: The in vitro percutaneous permeation of triptolide-loaded ethosomes was investigated by measuring diffusion across a sample of rat skin. To explore the transdermal delivery in vivo, we used a model in which erythema was induced in rats by methyl nicotinate and determined the change in erythema index caused by the anti-inflammatory activity of triptolide by a reflection spectrophotometer.

Results: The optimal conditions for preparing triptolide ethosomes consisted of ultrasonication of 45% (v/v) ethanol and 2% (w/v) DPPC for 5 minutes, which produced an average vesicle size of 51.4?nm and an entrapment efficiency of 98%. This ethosomal formulation of triptolide caused the greatest in vitro 24-hour accumulation of triptolide (83.7%) with no permeation time delay, and it reduced erythema in vivo more rapidly and more completely than other formulations.

Conclusions: Ethosomes might be a promising carrier that would enable the beneficial properties of triptolide to be safely delivered in a topical formulation.  相似文献   

3.
Despite its broad-spectrum antifungal properties, voriconazole has many side effects when administered systemically. The aim of this work was to develop an ethosomal topical delivery system for voriconazole and test its potential to enhance the antifungal properties and skin delivery of the drug. Voriconazole was encapsulated into various ethosomal preparations and the effect of phospholipid and ethanol concentrations on the ethosomes properties were evaluated. The ethosomes were evaluated for drug encapsulation efficiency, particle size and morphology and antifungal efficacy. Drug permeability and deposition were tested in rat abdominal skin. Drug encapsulation efficiency of up to 46% was obtained and it increased with increasing the phospholipid concentration, whereas the opposite effect was observed for the ethanol concentration. The ethosomes had a size of 420–600?nm and negative zeta potential. The particle size of the ethosomes increased by increasing their ethanol content. The ethosomes achieved similar inhibition zones against Aspergillus flavus at a 2-fold lower drug concentration compared with drug solution in dimethyl sulfoxide. The ex vivo drug permeability through rat abdominal skin was ~6-fold higher for the ethosomes compared with the drug hydroalcoholic solution. Similarly, the amount of drug deposited in the skin was higher for the ethosomes and was dependent on the ethanol concentration of the ethosomes. These results confirm that voriconazole ethosomal preparations are promising topical delivery systems that can enhance the drug antifungal efficacy and improve its skin delivery.  相似文献   

4.
Abstract

Melanoma is the most deadly and life-threatening form of skin cancer with progressively higher rates of incidence worldwide. The objective of the present investigation is to develop and to statistically optimize and characterize curcumin (CUR) loaded ethosomes for treatment of melanoma. A two factor, three level (32) factorial design approach was employed for the optimization of ethosomes. The prepared ethosomes were evaluated for size, zeta potential, entrapment efficiency, in vitro skin permeation and deposition ability. The optimized ethosomal formulation was evaluated for in vitro cytotoxicity and cellular uptake studies using A375 human melanoma cells. The optimized formulation has imperfect round shaped unilamellar structures with a mean vesicle size of 247?±?5.25?nm and an entrapment efficiency of 92.24?±?0.20%. The in vitro skin permeation studies proved the superiority of ethosomes over the traditional liposomes in terms of the amount of drug permeated and deposited in skin layers. Fluorescence microscopy showed the enhanced penetration of ethosomes into the deeper layers of the skin. In vitro cytotoxicity and cellular uptake studies revealed that curcumin ethosomes have significantly improved cytotoxicity and cellular uptake in A375 human melanoma cell lines. The colony formation assay results showed that curcumin ethosomes have a superior antiproliferative effect as they effectively inhibit the clonogenic ability of A375 cells. The flow cytometry results indicate that curcumin ethosomes induce cell death in A375 cells by apoptosis mechanism. The present study provides a strong rationale and motivation for further investigation of newly developed curcumin ethosomes as a potential therapeutic strategy for melanoma treatment.  相似文献   

5.
The main objective of the present work was to compare the transdermal delivery of salbutamol sulfate (SS), a hydrophilic drug used as a bronchodilator, from ethosomes and classic liposomes containing different cholesterol and dicetylphosphate concentrations. All the systems were characterized for shape, particle size, and entrapment efficiency percentage, by image analysis optical microscopy or transmission electron microscopy, laser diffraction, and ultracentrifugation, respectively. In vitro drug permeation via a synthetic semipermeable membrane or skin from newborn mice was studied in Franz diffusion cells. The selected systems were incorporated into Pluronic F 127 gels and evaluated for both drug permeation and mice skin deposition. In all systems, the presence of spherical-shaped vesicles was predominant. The vesicle size was significantly decreased (P < .05) by decreasing cholesterol concentration and increasing dicetylphosphate and ethanol concentrations. The entrapment efficiency percentage was significantly increased (P < .05) by increasing cholesterol, dicetylphosphate, and ethanol concentrations. In vitro permeation studies of the prepared gels containing the selected vesicles showed that ethosomal systems were much more efficient at delivering SS into mice skin (in terms of quantity and depth) than were liposomes or aqueous or hydroalcoholic solutions.  相似文献   

6.
Rao Y  Zheng F  Zhang X  Gao J  Liang W 《AAPS PharmSciTech》2008,9(3):860-865
In order to develop a novel transdermal drug delivery system that facilitates the skin permeation of finasteride encapsulated in novel lipid-based vesicular carriers (ethosomes)finasteride ethosomes were constructed and the morphological characteristics were studied by transmission electron microscopy. The particle size, zeta potential and the entrapment capacity of ethosome were also determined. In contrast to liposomes ethosomes were of more condensed vesicular structure and they were found to be oppositely charged. Ethosomes were found to be more efficient delivery carriers with high encapsulation capacities. In vitro percutaneous permeation experiments demonstrated that the permeation of finasteride through human cadaver skin was significantly increased when ethosomes were used. The finasteride transdermal fluxes from ethosomes containing formulation (1.34 ± 0.11 μg/cm2/h) were 7.4, 3.2 and 2.6 times higher than that of finasteride from aqueous solution, conventional liposomes and hydroethanolic solution respectively (P < 0.01).Furthermore, ethosomes produced a significant (P < 0.01) finasteride accumulation in the skin, especially in deeper layers, for instance in dermis it reached to 18.2 ± 1.8 μg/cm2. In contrast, the accumulation of finasteride in the dermis was only 2.8 ± 1.3 μg/cm2 with liposome formulation. The study demonstrated that ethosomes are promising vesicular carriers for enhancing percutaneous absorption of finasteride.  相似文献   

7.
The aim of this work was to evaluate the preparation of matrine ethosome and the percutaneous permeation in vitro and the anti-inflammatory activity in vivo in the rat skin. The matrine ethosomes were prepared by the ethanol injection-sonication method. The particle size of the ethosomes was measured by a laser particle-size analyzer, and the entrapment efficiency was detected by ultracentrifugation. The anti-inflammatory activity in vivo of the matrine formulations was determined by a reflection spectrophotometer. In this study, we found that the average particle size of matrine ethosomes was in the range of 50–200?nm with a narrow distribution, and the entrapment efficiency was in the range of 40–90%. Compared with other formulations, matrine ethosomes had the largest 24-hour accumulative permeation quantity (60.5%) and with no permeation lag time. Matrine ethosomes were able to make the induced erythema disappear more rapidly than the nonethosomes formulations of matrine. This study reveals that the average particle size of matrine ethosomes decreases with the increase of ethanol concentration and increases with the increase of phospholipid concentration, while the entrapment efficiency increases with the increase of the concentration of both ethanol and phospholipid. Matrine ethosomes can increase the percutaneous permeation of matrine in the experiment in vitro and improve the anti-inflammatory activity of matrine in vivo in rat skin.  相似文献   

8.
The purpose of the present research was to investigate the mechanism for improved intercellular and intracellular drug delivery from ethosomes using visualization techniques and cell line study. Ethosomal formulations were prepared using lamivudine as model drug and characterized in vitro, ex vivo and in vivo. Transmission electron microscopy, scanning electron microscopy, and fluorescence microscopy were employed to determine the effect of ethosome on ultrastructure of skin. Cytotoxicity and cellular uptake of ethosome were determined using T-lymphoid cell line (MT-2). The optimized ethosomal formulation showed 25 times higher transdermal flux (68.4 +/- 3.5 microg/cm(2)/h) across the rat skin as compared with that of lamivudine solution (2.8 +/- 0.2 microg/cm(2)/h). Microscopic studies revealed that ethosomes influenced the ultrastructure of stratum corneum. Distinct regions with lamellar stacks derived from vesicles were observed in intercellular region of deeper skin layers. Results of cellular uptake study showed significantly higher intracellular uptake of ethosomes (85.7% +/- 4.5%) as compared with drug solution (24.9% +/- 1.9%). The results of the characterization studies indicate that lipid perturbation along with elasticity of ethosomes vesicles seems to be the main contributor for improved skin permeation.  相似文献   

9.
Shi J  Wang Y  Luo G 《AAPS PharmSciTech》2012,13(2):485-492
In the present study, we have investigated transdermal administration of ligustrazine phosphate (LP), as an antioxidant, for the treatment of Alzheimer's disease (AD). The LP transdermal ethosomal system was designed and characterized. Franz-type diffusion cells and confocal laser scanning microscopy were used for the in vitro permeation studies. Furthermore, the effect of LP transdermal ethosomal system on AD was evaluated in the scopolamine-induced amnesia rats by evaluating the behavioral performance in the Morris water maze test. The activities of the antioxidant enzymes and the levels of the lipid peroxidation product malondialdehyde (MDA) in the brain of rats were also determined. The results showed that both the penetration ability and the drug deposition in skin of the LP ethosomal system were significantly higher than the aqueous one. The LP transdermal ethosomal system could recover the activities of the antioxidant enzymes and the levels of MDA in the brain of the amnesic rats to the similar status of the normal rats, which was also indirectly reflected by the improvement in the behavioral performance. In conclusion, LP might offer a potential alternative therapeutic drug in the fight against AD, and ethosomes could be vesicles of choice for transdermal delivery of LP.  相似文献   

10.
Abstract

Ropivacaine, a novel long-acting local anesthetic, has been proved to own superior advantage. However, Naropin® Injection, the applied form in clinic, can cause patient non-convenience. The purpose of this study was to formulate ropivacaine (RPV) in ethosomes and evaluate the potential of ethosome formulation in delivering RPV transdermally. The RPV-loaded ethosomes were prepared with thin-film dispersion technique and the formulation was characterized in terms of size, zeta potential, differential scanning calorimetry (DSC) analysis and X-ray diffraction (XRD) study. The results showed that the optimized RPV-ethosomes displayed a typical lipid bilayer structure with a narrow size distribution of 73.86?±?2.40?nm and drug loading of 8.27?±?0.37%, EE of 68.92?±?0.29%. The results of DSC and XRD study indicated that RPV was in amorphous state when encapsulated into ethosomes. Furthermore, the results of ex vivo permeation study proved that RPV-ethosomes could promote the permeability in a high-efficient, rapid way (349.0?±?11.5?μg?cm?2 at 12?h and 178.8?±?7.1?μg?cm?2 at 0.5?h). The outcomes of histopathology study forecasted that the interaction between ethosomes and skin could loosen the tight conjugation of corneocyte layers and weaken the permeation barrier. In conclusion, RPV-ethosomes could be a promising delivery system to encapsulate RPV and deliver RPV for transdermal administration.  相似文献   

11.
Context: Asenapine maleate (ASPM) is an antipsychotic drug for the treatment of schizophrenia and bipolar disorder. Extensive metabolism makes the oral route inconvenient for ASPM.

Objective: The objective of this study is to increase ASPM bioavailability via transdermal route by improving the skin permeation using combined strategy of chemical and nano-carrier (transfersomal) based approaches.

Materials and methods: Transfersomes were prepared by the thin film hydration method using soy-phosphatidylcholine (SPC) and sodium deoxycholate (SDC). Transfersomes were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, surface morphology, and in vitro skin permeation studies. Various chemical enhancers were screened for skin permeation enhancement of ASPM. Optimized transfersomes were incorporated into a gel base containing suitable chemical enhancer for efficient transdermal delivery. In vivo pharmacokinetic study was performed in rats to assess bioavailability by transdermal route against oral administration.

Results and discussion: Optimized transfersomes with drug:SPC:SDC weight ratio of 5:75:10 were spherical with an average size of 126.0?nm, PDI of 0.232, ZP of??43.7?mV, and entrapment efficiency of 54.96%. Ethanol (20% v/v) showed greater skin permeation enhancement. The cumulative amount of ASPM permeated after 24?h (Q24) by individual effect of ethanol and transfersome, and in combination was found to be 160.0, 132.9, and 309.3?μg, respectively, indicating beneficial synergistic effect of combined approach. In vivo pharmacokinetic study revealed significant (p?Conclusion: Dual strategy of permeation enhancement was successful in increasing the transdermal permeation and bioavailability of ASPM.  相似文献   

12.
Skin is considered the most accessible organ of the body because of its underlying capillary network. However, stratum corneum (SC), the upper most layer of skin, represents major diffusional barrier for most drugs. Hence, the use of edge activators (EAs) in designing novel elastic vesicles is hypothesized to impart their lipid bilayer with ultra-flexibility to trespass SC by high self-optimizing deformability. To confirm this hypothesis, this work aimed at developing novel bilosomes by modulating conventional niosomal composition using different bile salts as EAs and investigating their superiority over niosomes for transdermal delivery of diacerein (DCN), as model drug. Bilosomes were prepared by thin film hydration (TFH) technique according to full 31.22 factorial design to select the optimal formulation using Design-Expert® software. The optimal bilosomes (B6) showed nanosized vesicles (301.65?±?17.32?nm) and 100.00?±?0.00 % entrapment efficiency. Ex vivo permeation studies and in vivo evaluation revealed that B6 exhibited superior permeation and drug retention capacity compared to the conventional niosomal formulation and drug suspension. Furthermore, B6 was subjected to in vivo histopathological study using male Wistar rats which ensured its safety for topical application. Overall, the results confirmed the hypothesized superiority of bilosomes over niosomes for enhancing DCN flux across the skin.  相似文献   

13.
Context: Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability.

Objective: This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery.

Materials and methods: AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope.

Results: Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86?nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers.

Conclusion: HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.  相似文献   

14.
Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2–4% w/v and 0–40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm?2 drug retention in the skin, 44.312 μg cm?2 h?1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.  相似文献   

15.
Feasibility of developing a transdermal drug delivery of fluoxetine has been investigated. Permeation studies of fluoxetine across human cadaver skin were carried out using Franz diffusion cells. The receptor phase consisted of pH 7.4 phosphate buffer maintained at 37°C. Permeation enhancement of fluoxetine, either in the salt or base form, was achieved using various enhancers like azone, SR-38, and ethanol. Various O/W microemulsion systems of fluoxetine were developed to study their effect on the skin permeation of fluoxetine. The results indicated that ethanol at 65% vol/vol was able to increase the permeation of fluoxetine the most, while microemulsion systems showed decrease in the permeation of fluoxetine. The permeation of fluoxetine obtained using a 65% vol/vol ethanolic solution was found to be sufficient to deliver the required dose (20–80 mg) from a patch of feasible size. The results seem promising for developing a transdermal drug delivery system of fluoxetine. Published: September 30, 2005  相似文献   

16.
Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4?h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 23 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69?μg/cm2/h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72?h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.  相似文献   

17.
A prerequisite for successful transdermal or dermal drug therapy is the drug ability to penetration through the skin, especially stratum corneum (SC). The most acceptable technique for measuring skin permeation in vitro is the application of both the Franz diffusion cell device and the skin model. In the skin model, a liposome-based artificial skin membrane (LASM) consisting of tight layers of liposomes immobilized on a filter was prepared and characterized. Using porcine ear skin, rat skin and Strat-M? artificial membrane as control, the LASM was then evaluated in permeation studies with five active compounds: ferulic acid, paeoniflorin, albiflorin, tetrahydrocolumbamine, and tetrahydropalmatine. The scanning electron microscope images demonstrated complete filling of the membrane pores with lipids and the formation of a continuous liposomal coating. The contents of egg phosphatidylcholine (EPC) and cholesterol in LASM were measured to be 12.08?±?0.18 and 4.41?±?0.04?mg/cm2, respectively. Moreover, revealed by the measurement of electrical resistance, the LASM remains intact for at least 12?h with the incubation of 20% ethanol. The results of permeation studies demonstrated a good correlation (r2?=?0.9743, r?=?0.9871) of Papp values between the drugs’ permeation through LASM and porcine ear skin. In addition, by ATR-FTIR analysis, a slighter shift of CH2 stretching frequency between LASM and porcine ear skin was observed compared with the shift between Strat-M? membrane and porcine ear skin. In summary, for the first time, the LASM has been proved to be a valuable alternative to porcine ear skin in permeation studies using Franz diffusion cell device.  相似文献   

18.
As a first step in the development of novel liver-specific contrast agents using ethosomes for computed tomography (CT) imaging applications, we entrapped iodine within ethosomes, which are phospholipid vesicular carriers containing relatively high alcohol concentrations, synthesized using several types of alcohol, such as methanol, ethanol, and propanol. The iodine containing ethosomes that were prepared using methanol showed the smallest vesicle size (392?nm) and the highest CT density (1107 HU). The incorporation of cholesterol into the ethosomal contrast agents improved the stability of the ethosomes but made the vesicle size large. The ethosomal contrast agents were taken up well by macrophage cells and showed no cellular toxicity. The results demonstrated that ethosomes containing iodine, as prepared in this study, have potential as contrast agents for applications in CT imaging.  相似文献   

19.
The present research work was aimed to formulate clotrimazole encapsulated Cavamax W7 composite ethosomes by injection method for improved delivery across epidermis. 32 factorial design was used to design nine formulations (F1-F9) and compared with ethosomal formulations (F10-F12). F9 with vesicle size of 202.8 ± 4.8 nm, highest zeta potential (−83.6 ± 0.96 mV) and %EE of 98.42 ± 0.15 was selected as optimized composite ethosome and F12 as reference ethosomal formulation. As revealed by transmission electron microscopy F9 vesicles were more condensed, uniformly spherical in shape than F12 vesicles. Vesicular stability studies indicated F9 to be more stable as compared to F12. Both F9 and F12 were incorporated in carbopol 934 gel base to get G1–G8 gel formulations and evaluated for in vitro skin permeability. Cavamax W7 composite ethosomal optimized gel (G5) showed higher in vitro percent cumulative drug permeation (88.53 ± 2.10%) in 8 h and steady state flux (J ss) of 3.39 ± 1.45 μg/cm2/min against the J ss of 1.57 ± 0.23 μg/cm2/min for ethosomal gel (G1) and 1.13 ± 0.06 μg/cm2/min for marketed formulation. The J ss flux of G5 was independent of amount of drug applied/unit area of skin. In vivo confocal laser scanning microscopic study of G5 depicted uniform and deeper penetration of rhodamine B (marker) in epidermis from Cavamax W7 composite ethosomal gel in comparison to G1. Finally, G5 demonstrated better (p < 0.05) antifungal activity against Candida albicans and Aspergillus niger than G1 thus, signifying that Cavamax W7 composite ethosomes present a superior stable and efficacious vesicular system than ethosomal formulation for topical delivery of clotrimazole.  相似文献   

20.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号