首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Previous studies in our laboratories showed that a novel nonionic liposome formulation composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10) at a weight ratio composition of 57:15:28 delivered more cyclosporin-A (CsA) into and through the skin than phospholipid-based liposomal formulations and more conventional formulations that were tested. Since only a single GDL:CH:POE-10 composition was tested, we initiated studies to determine if it would be possible to control the rate and extent of drug uptake by varying the ratios of the liposome-forming components of the formulation. This report describes how the GDL to POE-10 ratio (CH being held constant at 15 wt%) influences the rate and extent of uptake of CsA following topical application of nonionic liposomal formulations to hairless mouse skin mounted on Franz diffusion cells. The results indicate that the rate and extent of CsA uptake is highest between GDL/POE-10 ratios of about 1 to 1.5 and decreases steadily at ratios above and below this range. The effect of liposomal composition on CsA deposition is probably the result of a number of complex and interrelated factors including partitioning of CsA from the formulation into the skin and permeation enhancer effects.  相似文献   

2.
Abstract

Our previous reports using hairless mouse skin model showed that topical delivery of cyclosporin-A (CsA) could be achieved and controlled with nonionic liposomal and nonionic lipid-based formulations composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10) at varying weight ratios (1,2). However, the distribution profiles were obtained using radiolabeled CsA and thus could represent intact drug as well as its metabolites. The present studies aim to investigate if the previously reported profiles actually represented intact CsA. The studies were carried out using a “high-pressure” liquid chromatography (HPLC) method and in vitro skin deposition studies with a metabolic inhibitor (sodium azide) incorporated in the receptor fluid. The results indicated that skin metabolism of CsA and hence its effect on percutaneous absorption of CsA is minimal and that the CsA distribution profiles obtained using radiolabeled CsA represented distribution of intact drug and not its metabolites.  相似文献   

3.
Abstract

In a previous report (1), we showed that the rate and extent of uptake of cyclosporin-A (CsA) following topical application of nonionic liposomal formulations composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10) into and through hairless mouse skin mounted on Franz diffusion cells could be controlled by varying the ratios of GDL to POE-10 (CH being held constant at 15 wt%). However, the pathways of transport as well as the dominant factors that control drug delivery from these formulations are not well understood. In this report, we describe results from studies similar in design to that reported earlier but using the melted form of the lipid components as a vehicle for transport of CsA into and through hairless mouse skin. The results suggest that the transport of CsA from liposomal formulations into and through the skin occurs as a result of dehydration of the liposomes followed by melting of the lipid components on the skin. Microautoradiographic studies suggest that CsA is predominantly transported via the pilosebaceous pathway.  相似文献   

4.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

5.
siRNA能高效且特异地阻断内源性同源基因的表达即RNA干涉(RNAi).RNAi在临床中的应用需要开发安全有效的输送系统,脂质纳米输送载体是一种具有发展潜力的siRNA输送系统.siRNA-脂质复合物的形成主要通过静电相互作用,静电作用必须足够强以至于载体在运输过程中不释放siRNA,而载体到达治疗部位时,解聚释放出siRNA.载体的粒径应小于100 nm,以利于细胞的摄取和透过特定部位的血管开窗.为了减少网状内皮系统(RES)的摄取和延长载体的循环时间,载体的表面由聚乙二醇修饰.本文主要综述了构建siRNA输送载体的基本要求.  相似文献   

6.
7.
Poly(ethylacrylic acid) (PEAA) is a pH-sensitive polymer that undergoes a transition from a hydrophilic to a hydrophobic form as the pH is lowered from neutral to acidic values. In this work we show that pH sensitive liposomes capable of intracellular delivery can be constructed by inserting a lipid derivative of PEAA into preformed large unilamellar vesicles (LUV) using a simple one step incubation procedure. The lipid derivatives of PEAA were synthesized by reacting a small proportion (3%) of the carboxylic groups of PEAA with C10 alkylamines to produce C10-PEAA. Incubation of C10-PEAA with preformed LUV resulted in the association of up to 8% by weight of derivatized polymer with the LUV without inducing aggregation. The resulting C10-PEAA-LUV exhibited pH-dependent fusion and leakage of LUV contents on reduction of the external pH below pH 6.0 as demonstrated by lipid mixing and release of calcein encapsulated in the LUV. In addition, C10-PEAA-LUV exhibited pH dependent intracellular delivery properties following uptake into COS-7 cells with appreciable delivery to the cell cytoplasm as evidenced by the appearance of diffuse intracellular calcein fluorescence. It is demonstrated that the cytoplasmic delivery of calcein by C10-PEAA-LUV could be inhibited by agents (bafilomycin or chloroquine) that inhibit acidification of endosomal compartments, indicating that this intracellular delivery resulted from the pH-dependent destabilization of LUV and endosomal membranes by the PEAA component of the C10-PEAA-LUV. It is concluded that C10-PEAA-LUV represents a promising intracellular delivery system for in vitro and in vivo applications.  相似文献   

8.
We characterised biological properties of novel formulations of two low-potency glucocorticosteroids, dexamethasone and hydrocortisone, which have an equivalent dose ratio of 1:50 in vasoconstriction tests. The rate of such carrier-mediated, mainly non-diffusive glucocorticosteroids transport with very deformable lipid vesicles (Transfersomes) through the skin, and the corresponding cutaneous drug biodistribution data, were complemented with the drug bio-efficacy studies. The minimum effective drug dose that reduces arachidonic acid-induced murine ear oedema by 50% was used as one bioactivity indicator. The minimum drug amount ensuring such an effect in mouse skin decreases appreciably when a corticosteroid is applied epicutaneously with very deformable vesicles rather than a lotion or a crème. Specifically, the minimum effective dose for hydrocortisone in very deformable carriers is 2-3 microg cm(-2) whereas for the crème- or lotion-like preparations at least 10 microg cm(-2) is required. Such three- to fivefold relative increase of hydrocortisone potency is accompanied by at least 13%, and more often >20%, absolute drug potency enhancement. The delivery of hydrocortisone with very deformable carriers moreover prolongs the suppression of the drug-induced oedema nearly 2-fold (to approximately 24 h per application). The effective dose of dexamethasone delivered with very deformable vesicles into murine skin is reduced >10 times compared with the crème- or lotion-based products. Specifically, less than 0.1 microg cm(-2) dexamethasone in very deformable vesicles suppresses the arachidonic acid-induced murine ear oedema >50%, on the average. Dexamethasone use on the skin in such vesicles extends the duration of drug action fourfold, compared with a commercial crème, i.e. to >48 h per application. Epicutaneous use of glucocorticosteroids in very deformable vesicles also diminishes such drug's abrasion sensitivity and may increase the general robustness of drug effect. Lower frequency of skin treatment, which ensures adequate biological response, is a result of this. Topical corticosteroid delivery with very deformable vesicles, Transfersomes, thus improves the therapeutic risk-benefit ratio, arguably due to better targeting into and longer drug presence in the skin.  相似文献   

9.
The purpose of this study was to prepare miconazole nitrate (MN) loaded solid lipid nanoparticles (MN-SLN) effective for topical delivery of miconazole nitrate. Compritol 888 ATO as lipid, propylene glycol (PG) to increase drug solubility in lipid, tween 80, and glyceryl monostearate were used as the surfactants to stabilize SLN dispersion in the SLN preparation using hot homogenization method. SLN dispersions exhibited average size between 244 and 766 nm. All the dispersions had high entrapment efficiency ranging from 80% to 100%. The MN-SLN dispersion which showed good stability for a period of 1 month was selected. This MN-SLN was characterized for particle size, entrapment efficiency, and X-ray diffraction. The penetration of miconazole nitrate from the gel formulated using selected MN-SLN dispersion as into cadaver skins was evaluated ex-vivo using franz diffusion cell. The results of differential scanning calorimetry (DSC) showed that MN was dispersed in SLN in an amorphous state. The MN-SLN formulations could significantly increase the accumulative uptake of MN in skin over the marketed gel and showed a significantly enhanced skin targeting effect. These results indicate that the studied MN-SLN formulation with skin targeting may be a promising carrier for topical delivery of miconazole nitrate.  相似文献   

10.
Designing of 'intelligent' liposomes for efficient delivery of drugs   总被引:4,自引:0,他引:4  
The liposome- vesicles made by a double phospholipidic layers which may encapsulate aqueous solutions- have been introduced as drug delivery vehicles due to their structural flexibility in size, composition and bilayer fluidity as well as their ability to incorporate a large variety of both hydrophilic and hydrophobic compounds. With time the liposome formulations have been perfected so as to serve certain purposes and this lead to the design of "intelligent" liposomes which can stand specifically induced modifications of the bilayers or can be surfaced with different ligands that guide them to the specific target sites. We present here a brief overview of the current strategies in the design of liposomes as drug delivery carriers and the medical applications of liposomes in humans.  相似文献   

11.
Abstract

Context: The physicochemical properties of drugs such as partition coefficient play a major role in the development of lipid-based drug delivery systems. The major obstacle lies in encapsulation of a drug with low partition coefficient into these systems.

Objective: The objective of this study was to design and optimize a novel lipid-based delivery system with higher loading, improved pharmacokinetics consequently enhancing the oral bioavailability of drugs with low partition coefficient like valsartan.

Materials and methods: The optimized formulation consists of Capryol 90, Cremophor RH 40, and Transcutol HP. Pseudo ternary phase diagrams were used to optimize the components and their concentrations in the formulation. Dissolution studies of the selected formulations were compared with plain drug and marketed product at three pH conditions (pH 1.2, 4.5 and 6.8). Pharmacokinetic parameters of optimized formulations were determined in Wistar rats and compared with that of plain drug.

Results and discussion: The optimized formulation with a mean particle size of 50?nm showed significant improvement (p?<?0.05) in dissolution rate with pH independence compared to plain drug and marketed product. The in vivo studies in Wistar rats revealed about 2.30- and 1.68-fold increase in the oral bioavailability and Cmax of valsartan from lipid-based formulation compared to plain drug.

Conclusion: The engineered formulation strategy by type IV lipid-based formulations can be successfully exploited to improve the dissolution rate and oral deliverability of drugs like valsartan.  相似文献   

12.
Oral administration of peptide and protein drugs faces a big challenge partly due to the hostile gastrointestinal (GI) environment. Lipid-based delivery systems are attractive because they offer some protection for peptides and proteins. In this context, we prepared a special lipid-based oral delivery system: archaeosomes, made of the polar lipid fraction E (PLFE) extracted from Sulfolobus acidocaldarius, and explored its potential as an oral drug delivery vehicle. Our study demonstrates that archaeosomes have superior stability in simulated GI fluids, and enable fluorescent labeled peptides to reside for longer periods in the GI tract after oral administration. Although archaeosomes have little effect on the transport of insulin across the Caco-2 cell monolayers, the in vivo experiments indicated that archaeosomes containing insulin induced lower levels of blood glucose than a conventional liposome formulation. These data indicate that archaeosomes could be a potential carrier for effective oral delivery of peptide drugs.  相似文献   

13.
Skin, the largest organ of the body serves as a potential route of drug delivery for local and systemic effects. However, the outermost layer of skin, the stratum corneum (SC) acts as a tough barrier that prevents penetration of hydrophilic and high molecular weight drugs. Ethosomes are a novel phospholipid vesicular carrier containing high ethanol concentrations and offer improved skin permeability and efficient bioavailability due to their structure and composition. This article gives a review of ethosomes including their compositions, types, mechanism of drug delivery, stability, and safety behaviour. This article also provides a detailed overview of drug delivery applications of ethosomes in various diseases.  相似文献   

14.
Yin DS  Yang WY  Ge ZQ  Yuan YJ 《Carbohydrate research》2005,340(6):1201-1206
The interactions between sodium hyaluronate, an anionic polysaccharide, with surfactants (anionic and nonionic) were investigated using pyrene fluorescence measurement methods. The change of micropolarity produced by the interaction was monitored by the measurement of emission intensity ratio between the first and third bands (I1/I3), and the intensity ratio of the excimer and the third vibration monomer band (I(E)/I(M)). Because the hydrophilic heads on the SDS were attracted by the domains formed by the hydroxyl groups of hyaluronate, the I1/I3 ratio was reduced by the addition of hyaluronate at lower than 0.06% of sodium dodecyl sulfate (SDS) concentration. No aggregation was observed between hyaluronate and nonionic surfactants (Tween-80 and Cremophor EL) in the whole concentration range studied. At a higher concentration of surfactant, the I1/I3 ratio of hyaluronate/surfactant was influenced by the addition of saccharide (glucose, lactose, or mannitol). However, the effect of saccharide could be reduced by the addition of salt.  相似文献   

15.
A protocol for percutaneous absorption studies has been validated, based on the use of reconstructed human epidermis (RHE) and aqueous solutions of test substances. However, it is often the case that it is more-complex formulations of drugs or chemicals which will make contact with the skin surface. To investigate whether RHE and the reconstructed full-thickness skin model (FT-model) can be used to predict uptake from formulations, we compared the permeation of hydrocortisone and testosterone when applied in emulsion form and as a solution containing the penetration enhancer, ethanol. Human and pig skin and a non-cornified alveolar model served as references. The results were compared with steroid release from the formulations. The permeation rates of the steroids were ranked as: alveolar model > RHE > FT-model, pig skin > human skin. In accordance with the rapid hydrocortisone release from the formulations, the permeation rates of this steroid exceeded those of testosterone. Only minor differences were observed when comparing the testosterone formulations, in terms of release and permeation. However, the ranking of the permeation of the hydrocortisone formulations was: solution > w/o emulsion > o/w emulsion, which permitted the elucidation of penetration enhancing effects, which is not possible with drug release studies. Differences in penetration were most obvious with native skin and reconstructed tissues, which exhibited a well-developed penetration barrier. In conclusion, RHE and skin preparations may be useful in the development of topical dermatics, and in the framework of hazard analysis of toxic compounds and their various formulations.  相似文献   

16.
Pharmaceutical molecules such as peptides and proteins are usually injected into the body. Numerous efforts have been made to find new noninvasive ways to administer these peptides. In this study, highly flexible vesicles (transfersomes [TFs]) were designed as a new modern transdermal drug delivery system for systemic drug administration through the skin, which had also been evaluated in vitro. In this study, two growth hormone-loaded TF formulations were prepared, using soybean lecithin and two different surfactants; F1_sodium deoxycholate and F 2_sodium lauryl sulfate. Thereafter, the amount of skin penetration by the two formulas was assessed using the Franz diffusion cell system. TF formulations were evaluated for size, zeta potential and in vitro skin penetration across the rat skin. Results indicated that vesicle formulations were stable for 4 weeks and their mean sizes were 241.33 ± 17 and 171 ± 12.12 nm in the F 1 and F 2 formulation, respectively. After application to rat skin, transport of the human growth hormone (hGH) released from the TF formulations was found to be higher than that of the hGH alone. Maximum amounts of transdermal hormone delivery were estimated to be 489.54 ± 8.301 and 248.46 ± 4.019 ng·cm−2 , for F 1 and F 2, respectively. The results demonstrate the capability of the TF-containing growth hormone in transdermal delivery and superiority of the F 1 to F 2 TFs.  相似文献   

17.
The main problem in delivery of drugs across the skin is the barrier function of the skin, which is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid layers, the so-called lipid lamellae. When applying drugs onto the skin, the major penetration pathway is the tortuous intercellular route along the lipid lamellae. In order to increase the number of drugs administered via the transdermal route, novel drug delivery systems have to be designed. Among these systems are iontophoresis, electroporation, microneedles, and vesicular systems.  相似文献   

18.
The main problem in delivery of drugs across the skin is the barrier function of the skin, which is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid layers, the so-called lipid lamellae. When applying drugs onto the skin, the major penetration pathway is the tortuous intercellular route along the lipid lamellae. In order to increase the number of drugs administered via the transdermal route, novel drug delivery systems have to be designed. Among these systems are iontophoresis, electroporation, microneedles, and vesicular systems.  相似文献   

19.
Rao NM  Gopal V 《Bioscience reports》2006,26(4):301-324
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.  相似文献   

20.
Characterization of a new tissue-engineered human skin equivalent with hair   总被引:10,自引:0,他引:10  
Summary We designed a new tissue-engineered skin equivalent in which complete pilosebaceous units were integrated. This model was produced exclusively from human fibroblasts and keratinocytes and did not contain any synthetic material. Fibroblasts were cultured for 35 d with ascorbic acid and formed a thick fibrous sheet in the culture dish. The dermal equivalent was composed of stacked fibroblast sheets and exhibited some ultrastructural organization found in normal connective tissues. Keratinocytes seeded on this tissue formed a stratified and cornified epidermis and expressed typical markers of differentiation (keratin 10, filaggrin, and transglutaminase). After 4 wk of culture, a continuous and ultrastructurally organized basement membrane was observed and associated with the expression of laminin and collagen IV and VII. Complete pilosebaceous units were obtained by thermolysin digestion and inserted in this skin equivalent in order to assess the role of the transfollicular route in percutaneous absorption. The presence of hair follicles abolished the lag-time observed during hydrocortisone diffusion and increased significantly its rate of penetration in comparison to the control (skin equivalent with sham hair insertion). Therefore, this new hairy human skin equivalent model allowed an experimental design in which the only variable was the presence of pilosebaceous units and provided new data confirming the importance of hair follicles in percutaneous absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号