首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effects of phospholipid composition on the pharmacokinetics (PK) and biodistribution of epirubicin (EPI) liposomes, as well as the in vitro macrophage uptake of various liposome formulations, were investigated. Three liposome formulations were investigated: HSPC:Chol (L-EPI; 5:4 molar ratio), HSPC:Chol:DSPG (D-EPI; 5:4:1 molar ratio), and HSPC:Chol:DSPG:DSPE-mPEG(2000) (S-EPI; 5:4:1:0.3 molar ratio). Small unilamellar liposomes were prepared by the modified thin-film hydration method with extrusion through polycarbonate filters, and EPI was remote loaded into liposomes by the transmembrane ammonium sulfate gradient method. Macrophages were used to evaluate in vitro the cellular uptake of EPI-loaded liposomes. The following decreasing order of uptake amount was observed: L-EPI>D-EPI>S-EPI. D-EPI showed a relatively low level of uptake, probably because of the steric hindrance provided by the glycerol head group on DSPG, protecting it from the direct recognization by cell-membrane receptors. With the presence of serum, uptake values for all liposome formulations were increased for the activation of the complement system. In the PK study, S-EPI showed significantly prolonged circulating time and reduced clearance. The following increasing order of area under the concentration versus time curve was observed among the various liposome formulations: L-EPI相似文献   

2.
In this study the anticancer activity of paclitaxel-loaded nano-liposomes on glioma cell lines was investigated. Soya phosphatidylcholine:cholesterol (SPC:Chol), hydrogenated soya phosphatidylcholine:cholesterol (HSPC:Chol) or dipalmitoylphosphatidylcholine:cholesterol (DPPC:Chol) in 1:1?mole ratio were used to prepare ethanol-based proliposomes. Following hydration of proliposomes, the size of resulting vesicles was subsequently reduced to nanometer scale via probe-sonication. The resulting formulations were characterized in terms of size, zeta potential and morphology of the vesicles, and entrapment efficiency of paclitaxel (PX) as well as the final pH of the preparations. DPPC-liposomes entrapped 35–92% of PX compared to 27–74% and 25–60% entrapped by liposomes made from SPC and HSPC formulations respectively, depending on drug concentration. The entrapment efficiency of liposomes was dependent on the lipid bilayer properties and ability of PX to modify surface charge of the vesicles. In vitro cytotoxicity studies revealed that PX-liposome formulations were more selective at inhibiting the malignant cells. The cytotoxicity of PX-liposomes was dependent on their drug-entrapment efficiency. This study has shown PX-liposomes generated from proliposomes have selective activity against glioma cell lines, and the synthetic DPPC phospholipid was most suitable for maximized drug entrapment and highest activity against the malignant cells in vitro.  相似文献   

3.
Abstract

It is known that Phosphatidyl choline-Phosphatidyl glycerol mixtures can be used for liposome formulations, making them less leaky than liposomes with only one lipid. We hypothesized that this might also be the case for bubbles, which can be used as ultrasound (US) contrast agents. Therefore, we have compared a series of mixed distearoyl phosphatidylcholine-distearoyl phosphatidylglycerol (DSPC-DPSG) bubbles and with bubbles containing either DSPC or DSPG (and distearoyl ethanolamine-polyethyleneglycol 2000, DSPE-PEG2k). Here, we describe the development, examination of stability in vitro and attenuation of broad frequency US pulses. Novel lipid-stabilized freeze-dried formulations for US applications, using the phospholipids DSPC, DSPG, and PEGylated DSPE-PEG2k and perfluoropropane gas were developed. It was found that the bubbles could effectively be preserved by freeze-drying and then re-constituted by addition of water. Average bubble sizes were around 2?µm for all bubbles after re-constitution. Bubble stability was assessed by evaluating the decay of the US backscattering signal in vitro. Bubbles containing DSPG were more stable than bubbles with only DSPC. The composition DSPC:DSPG:DSPE-PEG2k 30:60:10 (molar ratio) was the most stable with an effective half-life of 9.12?min, compared to bubbles without DSPG, which had half-life of 2.05?min. Bubble attenuation of US depended highly on the compositions. Bubbles without DSPG had the highest attenuation indicating higher oscillation the most but were also destroyed by higher energy US. No bubbles with DSPG showed any indication of destruction but all had increased attenuations to varying degrees, DSPC:DSPG:DSPE-PEG2k 45:45:10 showed the least attenuation.  相似文献   

4.
In the present work, a long-circulating epirubicin hydrochloride (EPI)-containing thermosensitive liposome aiming at antitumor therapy, DPPC/MSPC/DSPG/DSPE-mPEG(2000) (EPI-LTSL), was developed and evaluated. Nonthermosensitive and traditional liposomes, HSPC/cholesterol/DSPG/DSPE-mPEG(2000) (EPI-NTSL) and HSPC/cholesterol (EPI-LIP), were also prepared at the same time for comparison. Temperature-dependent EPI release from loaded liposomes in vitro was characterized by the fluorescence method. Different liposome preparations were administered in rats by intravenous injection at the same dosage of 12 mg·kg(-1). EPI and internal standard daunorubicin hydrochloride (DAU) were analyzed by high-performance liquid chromatography and verified by LC tandem mass spectrometry. In the pharmacodynamics study, the EPI-LTSL was combined with local hyperthermia for target-specific delivery to the anesthetized and tumor-bearing mice. According to the in vitro results, more than 90% of loaded EPI was released from MSPC-containing liposome (EPI-LTSL) within 4 minutes at 43°C, while at 37°C, less than 5% was released beyond 60 minutes. However, less than 5% of drug was released at 43°C for the other two liposomes without MSPC (EPI-NTSL and EPI-LIP). The results of the pharmacokinetics study in rats showed that not only the circulation time of EPI was prolonged significantly, but also the concentration in vivo was promoted for EPI-LTSL, compared to EPI-NTSL and EPI-solution. The mean tumor inhibitory rate for EPI-LTSL, EPI-NTSL, and EPI-solution were 61.1, 39.6, and 43.1%, respectively.  相似文献   

5.
The aim of this work was to study the iron uptake of Caco-2 cells incubated with five different formulations of liposomes containing iron. The vesicles were also characterized before, during, and after in vitro digestion. Caco-2 cells were incubated with digested and nondigested liposomes, and soluble iron uptake was determined. Nondigested liposomes made with chitosan (CHI) or the cationic lipid, DC-Cholesterol (DC-CHOL), generated the highest iron uptake. However, these two formulations were highly unstable under in vitro digestion, resulting in nonmeasurable iron uptake. Digested conventional liposomes composed of soybean phosphatidylcholine (SPC), hydrogentated phosphatidylcholine (HSPC), or HSPC and cholesterol (CHOL) presented the highest iron-uptake values. These liposomal formulations protected iron from oxidation and improved iron uptake from intestinal cells, compared to an aqueous solution of ferrous sulphate.  相似文献   

6.
Abstract

Rationale and Objectives:

The use of contrast-carrying liposomes in diagnostic applications (1) or of haemoglobin liposomes in blood replacement therapy (2) requires infusion of large lipid doses. Saturated lipids like HSPC are often used in these formulations to render the liposomes more stable (3). Previous studies have indicated that intravenous injection of such liposome preparations can result in significant haemodynamic changes in rats (14). The purpose of this study was to systematically evaluate cardio- and haemodynamic effects of liposomes prepared from saturated and unsaturated phosphatidylcholine alone or in combination with other lipid components.

Methods;

Liposomes made from SPC, HSPC, DSPC, DSPC/CH, DSPC/DSPG, DSPC/CH/DSPG were infused in anaesthetized rats (total lipid dose: 300 mg lipid/kg BW) and cardio-heamodynamic parameters were measured.

Results:

DSPC-liposomes significantly reduced blood pressure (BP) and total peripheral resistance (TPR) by -53.7 % and -45.7 % of prevalue, respectively. Similar results were obtained for HSPC-liposomes. Marked ECG-changes were recorded for both formulations. SPC-liposomes caused a transient and moderate reduction of BP and TPR (-17.0 % and -22.3 %, respectively). Short-lasting ECG changes were also observed. The addition of cholesterol or DSPG to DSPC liposomes reduced cardiac and haemodynamic side effects in rats.

Conclusion;

The lipid composition of liposomes is of major importance for the incidence of cardiovascular side effects in rats. Liposomes composed of pure saturated phosphatidylcholine cause significant changes which can be diminished by the addition of other lipid components like cholesterol.  相似文献   

7.
A simple and inexpensive method for functionalization of preformed liposomes is presented. Soy sterol-PEG1300 ethers are activated by tresylation at the end of the PEG chain. Coupling of bovine serum albumin as an amino group containing model ligand to the activated lipids can be performed at pH 8.4 with high efficiency. At room temperature, the mixture of sterol-PEG and sterol-PEG-protein inserts rapidly into the outer liposome monolayer with high efficiency (>100 microg protein/mumol total lipid). This method of post-functionalization is shown to be effective with fluid or rigid and plain or pre-PEGylated liposomes (EPC/Chol, 7:3; HSPC/Chol 2:1, and EPC/Chol/MPEG2000-DSPE 2:1:0.16 molar ratios). The release of entrapped calcein upon the insertion of 7.5 mol% of the functionalized sterols is lower than 4%. Incubation of post-functionalized liposomes with serum for 20 h at 37 degrees C shows stable protein attachment at the liposome surface.  相似文献   

8.
A simple and inexpensive method for functionalization of preformed liposomes is presented. Soy sterol-PEG1300 ethers are activated by tresylation at the end of the PEG chain. Coupling of bovine serum albumin as an amino group containing model ligand to the activated lipids can be performed at pH 8.4 with high efficiency. At room temperature, the mixture of sterol-PEG and sterol-PEG-protein inserts rapidly into the outer liposome monolayer with high efficiency (>100 μg protein/μmol total lipid). This method of post-functionalization is shown to be effective with fluid or rigid and plain or pre-PEGylated liposomes (EPC/Chol, 7:3; HSPC/Chol 2:1, and EPC/Chol/MPEG2000-DSPE 2:1:0.16 molar ratios). The release of entrapped calcein upon the insertion of 7.5 mol% of the functionalized sterols is lower than 4%. Incubation of post-functionalized liposomes with serum for 20 h at 37 °C shows stable protein attachment at the liposome surface.  相似文献   

9.
The luciferase gene expression of lipoplexes, a liposome containing luciferase plasmid (pCMVLuc), in HeLa cell lines, was investigated. Cationic liposomes were prepared by the chloroform film method with sonication. The lipoplex was formed by loading the liposome with pCMVLuc. The lipoplex with an optimal weight ratio of dimethyl dioctadecyl ammonium bromide (DDAB)/pCMVLuc protected from DNaseI was determined by an agarose gel electrophoresis. The selected lipoplexes were assayed for luciferaase activity by using a luminometer. The effect on cell proliferation was evaluated by WST-1 assay. The highest luciferase activity of 1.5 × 106 RLU was observed in the cholesterol (Chol)/DDAB (2:1 molar ratio) lipoplex at the DDAB/pCMVLuc weight ratio of 10:1 at 48 hours, which was about 10, 100, and 1,000 times higher than the DDAB, L-alpha-dipalmitoyl phosphatidylcholine (DPPC)/Chol/DDAB (1:2:1 molar ratio), and DPPC/Chol/DDAB (2:2:1 molar ratio) lipoplexes, respectively. The liposome with the smallest particle size was obtained from the cationic liposome composed of DPPC/Chol/DDAB (7:1:1 molar ratio) with the ζ potential of 7.17 ± 0.73. The optimal weight ratio of DDAB/pCMVLuc that protected pCMVLuc from DNaseI digestion was 4:1 in the DDAB formulation. The Chol/DDAB (2:1 molar ratio) lipoplex with the DDAB/pCMVLuc of 10:1 showed the highest luciferase activity of 1.5 × 106 RLU and the highest cytotoxicity as well. DPPC/Chol/DDAB (1:1:1 molar ratio)-lipoplex (DDAB/pCMVLuc = 14:1), which had the amount of DPPC and cholesterol not exceeding 33 and 50% mol, respectively, gave the lower gene expression of about 4 times, but lower cytoxicity of about 14 times, than the Chol/DDAB lipoplex (2:1 molar ratio) and was considered to be the most suitable formulation. The results from this study can be applied as a model for the development of a gene-therapeutic dosage form.  相似文献   

10.
Three types of pyranine (HPTS)-containing liposomes were prepared by high-pressure homogenization under optimized conditions. At 37°C, they were 1) fluid-state vesicles made from soybean phosphatidylcholine (SPC), 2) gel-state liposomes made from hydrogenated SPC (HSPC), and 3) solid-disordered membranes obtained from HSPC and cholesterol (HSPC-Chol). These liposome formulations were characterized before, during, and after in vitro digestion, which involved the presence of pH gradients, enzymes, and bile salts. Mean sizes and size distributions of the vesicles were determined by DLS; 31P-NMR (nuclear magnetic resonance) was used to quantify lyso-PC forms; internal pH was monitored throughout digestion with two different fluorescent pH probes; and changes in bilayer permeability and HPTS encapsulation were determined by size-exclusion chromatography and fluorimetry. Differential scanning calorimetry analysis was also performed in order to study the effect of digestion on HSPC vesicles. SPC liposomes were physically stable during digestion; they presented 8% lyso-forms and an HPTS encapsulation around 85% after in vitro digestion. However, they were extremely permeable to ions, so that the internal pH immediately equilibrated with the bulk pH. HSPC liposomes were the most affected by the digestive process. Even though they were chemically stable, as inferred from the low lyso-PC content, very important changes in their size distribution were observed. A final 50% HPTS leakage was quantified after in vitro digestion. Nevertheless, they were the least permeable to protons under pH gradients. HSPC-Chol vesicles presented intermediate permeability to protons, having their internal pH decreased from approximately 6.8 to 4.6 after 1 hour of incubation at pH 2. This was the most chemically stable formulation and showed the highest encapsulation, even after in vitro digestion. Therefore, HSPC-Chol liposomes would be the most adequate choice for the design of lipid products for oral administration.  相似文献   

11.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 °C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

12.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 degrees C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

13.
Abstract

An in vitro liposome-cell association system has been developed that will allow the study of uptake and metabolism of liposomes by cultured cells at nanomolar lipid concentrations. The fate of cell associated liposomes is followed through the liposome encapsulated marker, methotrexate. Detection is based on the inhibition of dihydrofolate reductase by methotrexate, after its release from cells through boiling. Methotrexate in phospha-tidylglycerol (PG) liposomes is taken up by cells and then subsequently lost from the cells. Uptake is partially blocked by monensin. Loss from the cells is blocked by metabolic inhibitors, monensin, ammonium chloride, and chloroquine. Methotrexate in distearoylphosphatidylglycerol (DSPG) liposomes is taken up by cells slowly, and there is minimal lost of methotrexate after uptake. Pulse studies show that metabolism of PG liposomes after endocytosis is occurring at a much higher rate than that of DSPG liposomes, and substantial retention of encapsulated methotrexate occurs for both liposome compositions.  相似文献   

14.
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes’ content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake]Total from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93?±?12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake]Total with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6?±?1.5, 17.6?±?1.2, and 34?±?3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87?±?3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.  相似文献   

15.
The influence of cholesterol (Chol) in the liposomal bilayer on the properties of inhalable protein-loaded liposomal powders prepared by spray-drying technique was investigated. Lysozyme (LSZ) was used as a model protein. Feed solution for spray drying was prepared by direct mixing of aqueous solution of LSZ with mannitol solution and empty liposome dispersions composed of hydrogenated phosphatidylcholine and Chol at various molar ratios. The spray-dried powders were characterized with respect to morphology, thermal property, and crystallinity using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction, respectively. Most formulations gave slightly aggregated, spherical particles, and percentage yields of the spray-dried powders decreased with increasing Chol content. Degree of particle aggregation depended on the powder composition. The powders spontaneously formed liposomes which efficiently entrapped LSZ after reconstitution with HEPES buffered saline (HBS) at 37°C. Lysozyme entrapment efficiency and size distribution of the reconstituted liposomes were evaluated after the powders were reconstituted with HBS. Increasing Chol content resulted in a decrease in size of the reconstituted liposomes and an increase in entrapment efficiency of LSZ. These results correlated with thermal behaviors of the reconstituted liposomes. Biological activity of LSZ was not affected by the spray-drying process. It was also demonstrated that LSZ-loaded liposomal powders could be produced without the need to preload the LSZ into liposomes prior to spray-drying process.  相似文献   

16.
Poly(ethylene glycol)-coated liposomes were prepared with two new synthesised pegylated cholesterol (Chol) derivatives linked via carbamate bond. Poly(ethylene glycol) (PEG) was directly linked to Chol (PEG-Chol) or through a space arm of diaminebutane (PEG-L-Chol). In buffer, the physicochemical properties of PC/Chol liposomes (2/1, molar ratio) containing up to 10 mol% of pegylated Chol derivatives did not change significantly and the PEG layer at liposome surface inhibited the agglutination of biotin-liposomes induced by streptavidin. On the other hand, in serum, PEG-L-Chol seemed to reduce the interactions of liposomes with serum proteins, much more than PEG-Chol. The low steric hindrance of PEG-Chol derivative may be due to the slow conformational transition rate of the polymer, since PEG may be deeper located in the membrane. The coupling efficiency of the ligand to the functionalised amino group at the polymer end was also affected, but, its antigen-binding activity was preserved. The basic physical-chemical characteristics studied in this work are relevant to assess the application of pegylated Chol liposomes as drug delivery systems.  相似文献   

17.
The pharmacokinetics (PK), biodistribution (BD), and therapeutic activity of pegylated liposomal doxorubicin formulations with different drug release rates were studied in an orthotopic 4T1 murine mammary carcinoma model. The focus of these experiments was to study the effects of different release rates on the accumulation of liposomal lipid and doxorubicin (DXR) into the tumor and cutaneous tissues of mice (skin and paws). These tissues were chosen because the clinical formulation of pegylated liposomal doxorubicin (Caelyx)/Doxi) causes mucocutaneous reactions such as palmar-plantar erythrodysesthesia (PPE). Liposomes with different doxorubicin (DXR) leakage rates were prepared by altering liposome fluidity through changing the fatty acyl chain length and/or degree of saturation of the phosphatidylcholine component of the liposome. Liposomes with fast, intermediate, and slow rates of drug release were studied. The plasma PK of the liposomal lipid was similar for all formulations, while the plasma PK of the DXR component was dependent on the liposome formulation. Liposomal lipid accumulated to similar levels in tumor and cutaneous tissues for all three formulations tested, while the liposomes with the slowest rates of DXR release produced the highest DXR concentrations in both cutaneous tissues and in tumor. Liposomes with the fastest drug release rates resulted in low DXR concentrations in cutaneous tissues and tumor. The formulation with intermediate release rates produced unexpected toxicity that was not related to the lipid content of the formulation. The liposomes with the slowest rate of drug leakage had the best therapeutic activity of the formulations tested.  相似文献   

18.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

19.
Abstract

The aim of the present study is to investigate the interactions between liposomes and proteins and to evaluate the role of liposomal lipid composition and concentration in the formation of protein corona. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or hydrogenated soybean phosphatidylcholine (HSPC) with 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] (DPPE-PEG 3000), cholesterol (CH) or mixtures of these lipids, were prepared at different concentrations by the thin-film hydration method. After liposomes were dispersed in HPLC-grade water and foetal bovine serum (FBS), their physicochemical characteristics, such as size, size distribution, and ζ-potential, were determined using dynamic and electrophoretic light scattering. Aggregation of DPPC, HSPC, DPPC:CH (9:1 molar ratio), and HSPC:CH (9:1 molar ratio) in FBS was observed. On the contrary, liposomes incorporating DPPG lipids and CH both in a molar ratio of 11% were found to be stable over time, while their size did not alter dramatically in biological medium. Liposomes containing CH and PEGylated lipids retain their size in the presence of serum as well as their physical stability. In addition, our results indicate that the protein binding depends on the presence of polyethylene glycol (PEG), CH, concentration and surface charge. In this paper, we introduce a new parameter, fraction of stealthiness (Fs), for investigating the extent of protein binding to liposomes. This parameter depends on the changes in size of liposomes after serum incubation, while liposomes have stealth properties when Fs is close to 1. Thus, we conclude that lipid composition and concentration affect the adsorption of proteins and the liposomal stabilization.  相似文献   

20.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号